(o]
o —
(@]
—
>
|_

LNCS 4719

International Spring School, SSDGP 2006
Nottingham, UK, April 2006
Revised Lectures

T<

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4719

Roland Backhouse Jeremy Gibbons
Ralf Hinze Johan Jeuring (Eds.)

Datatype-Generic
Programming

International Spring School, SSDGP 2006
Nottingham, UK, April 24-27, 2006
Revised Lectures

@ Springer

Volume Editors

Roland Backhouse

University of Nottingham

School of Computer Science

Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK
E-mail: rcb@cs.nott.ac.uk

Jeremy Gibbons

Oxford University, Computing Laboratory

Wolfson Building, Parks Road, Oxford, OX1, 3QD, UK
E-mail: Jeremy.Gibbons @comlab.ox.ac.uk

Ralf Hinze

Universitit Bonn

Institut fiir Informatik I1I

Romerstrae 164, 53117 Bonn, Germany
E-mail: ralf @informatik.uni-bonn.de

Johan Jeuring

Utrecht University

Institute of Information and Computing Science
3508 TB Utrecht, The Netherlands

E-mail: johanj@cs.uu.nl

Library of Congress Control Number: Applied for

CR Subject Classification (1998): D.3, D.1, D.2, 3, E.1
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-76785-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-76785-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12191963 06/3180 543210

Preface

A leitmotif in the evolution of programming paradigms has been the level and
extent of parametrisation that is facilitated — the so-called genericity of the
paradigm. The sorts of parameters that can be envisaged in a programming
language range from simple values, like integers and floating-point numbers,
through structured values, types and classes, to kinds (the type of types and/or
classes). Datatype-generic programming is about parametrising programs by the
structure of the data that they manipulate.

To appreciate the importance of datatype genericity, one need look no further
than the internet. The internet is a massive repository of structured data, but
the structure is rarely exploited. For example, compression of data can be much
more effective if its structure is known, but most compression algorithms regard
the input data as simply a string of bits, and take no account of its internal
organisation.

Datatype-generic programming is about exploiting the structure of data when
it is relevant and ignoring it when it is not. Programming languages most com-
monly used at the present time do not provide effective mechanisms for docu-
menting and implementing datatype genericity. This volume is a contribution
towards improving the state of the art.

The emergence of datatype genericity can be traced back to the late 1980s.
A particularly influential contribution was made by the Dutch STOP (Specifi-
cation and Transformation of Programs) project, led by Lambert Meertens and
Doaitse Swierstra. The idea that was “in the air” at the time was the common-
ality in ways of reasoning about different datatypes. Reynolds’ parametricity
theorem, popularised by Wadler [17] as “theorems for free,” and so-called “de-
forestation” techniques came together in the datatype-generic notions of “cata-
morphism,” “anamorphism” and “hylomorphism,” and the theorem that every
hylomorphism can be expressed as the composition of a catamorphism after an
anamorphism. The “theory of lists” [5] became a “theory of F's,” where F is an
arbitrary datatype, and the “zip” operation on a pair of equal-length lists be-
came a generic transformation from an F' structure of same-shape G structures
to a G structure of same-shape F' structures [1,11].

In response to these largely theoretical results, efforts got underway in the
mid-to-late 1990s to properly reflect the developments in programming language
design. The extension of functional programming to “polytypic” programming
[14,12] was begun, and, in 1998, the “generic programming” workshop was or-
ganized by Roland Backhouse and Tim Sheard at Marstrand in Sweden [4],
shortly after a Dagstuhl Seminar on the same topic [13]. The advances that had
been made played a prominent part in the Advanced Functional Programming
summer school [16, 3,15, 6], which was held in 1998.

VI Preface

Since the year 2000, the emphasis has shifted yet more towards making
datatype-generic programming more practical. Research projects with this goal
have been the Generic Haskell project led by Johan Jeuring at Utrecht Univer-
sity (see, for example, [10,9]), the DFG-funded Generic Programming project led
by Ralf Hinze at the Universtiy of Bonn, and the EPSRC-supported Datatype-
Generic Programming project at the universities of Nottingham and Oxford,
which sponsored the Spring School reported in this volume. (Note that although
the summer school held in Oxford in August 2002 [2] was entitled “Generic Pro-
gramming,” the need to distinguish “datatype” generic programming from other
notions of “generic” programming had become evident; the paper “Patterns in
Datatype-Generic Programming” [8] is the first published occurrence of the term
“datatype-generic programming.”)

This volume comprises revisions of the lectures presented at the Spring School
on Datatype-Generic Programming held at the University of Nottingham in April
2006. All the lectures have been subjected to thorough internal review by the
editors and contributors, supported by independent external reviews.

Gibbons (“Datatype-Generic Programming”) opens the volume with a com-
prehensive review of different sorts of parametrisation mechanisms in program-
mming languages, including how they are implemented, leading up to the notion
of datatype genericity. In common with the majority of the contributors, Gib-
bons chooses the functional programming language Haskell to make the notions
concrete. This is because functional programming languages provide the best
test-bed for experimental ideas, free from the administrative noise and clutter
inherent in large-scale programming in mainstream languages. In this way, Gib-
bons relates the so-called design patterns introduced by Gamma, Helm, Johnson
and Vlissides [7] to datatype-generic programming constructs (the different types
of morphism mentioned earlier). The advantage is that the patterns are made
concrete, rather than being expressed in prose by example as in a recent Publi-
cation [7].

Hinze, Jeuring and Loh (“Comparing Approaches to Generic Programming
in Haskell”) compare a variety of ways that datatype-generic programming tech-
niques have been incorporated into functional programming languages, in partic-
ular (but not exclusively) Haskell. They base their comparison on a collection of
standard examples: encoding and decoding values of a given datatype, compar-
ing values for equality, and mapping a function over, “showing,” and performing
incremental updates on the values stored in a datatype. The comparison is based
on a number of criteria, including elements like integration into a programming
language and tool support.

The goal of Hinze and Loh’s paper (“Generic Programming Now”) is to show
how datatype-generic programming can be enabled in present-day Haskell. They
identify three key ingredients essential to the task: a type reflection mechanism,
a type representation and a generic view on data. Their contribution is to show
how these ingredients can be furnished using generalised algebraic datatypes.

The theme of type reflection and type representation is central to Altenkirch,
McBride and Morris’s contribution (“Generic Programming with Dependent

Preface VII

Types”) . Their paper is about defining different universes of types in the Epi-
gram system, an experimental programming system based on dependent types.
They argue that the level of genericity is dictated by the universe that is cho-
sen. Simpler universes allow greater levels of genericity, whilst more complex
universes cause the genericity to be more restricted.

Dependent types, and the Curry-Howard isomorphism between proofs and
programs, also play a central role in the Q2mega language introduced by Sheard
(“Generic Programming in Qmega”). Sheard argues for a type system that is
more general than Haskell’s, allowing a richer set of programming patterns,
whilst still maintaining a sound balance between computations that are per-
formed at run-time and computations performed at compile-time.

Finally, Lammel and Meijer (“Revealing the X/O Impedance Mismatch”) ex-
plore the actual problem of datatype-generic programming in the context of
present-day implementations of object-oriented languages and XML data mod-
els. The X/O impedance mismatch refers to the incompatibilities between XML
and object-oriented models of data. They provide a very comprehensive and up-
to-date account of the issues faced by programmers, and how these issues can
be resolved.

It remains for us to express our thanks to those who have contributed to
the success of the School. First and foremost, we thank Fermin Reig, who was
responsible for much of the preparations for the School and its day-to-day orga-
nization. Thanks also to Avril Rathbone and Pablo Nogueira for their organi-
zational support, and to the EPSRC (under grant numbers GR/S27085/01 and
GR/D502632/1) and the School of Computer Science and IT of the University
of Nottingham for financial support. Finally, we would like to thank the (anony-
mous) external referees for their efforts towards ensuring the quality of these
lecture notes.

June 2007
Roland Backhouse
Jeremy Gibbons
Ralf Hinze
Johan Jeuring

VIII Preface

References

10.

11.

12.

13.

14.

15.

16.

17.

Backhouse, R.C., Doornbos, H., Hoogendijk, P.: A class of commuting relators
(September 1992), Available via World-Wide Web at
http://www.cs.nott.ac.uk/ “rcb/MPC/papers

. Backhouse, R., Gibbons, J. (eds.): Generic Programming. LNCS, vol. 2793.

Springer, Heidelberg (2003)

Backhouse, R., Jansson, P., Jeuring, J., Meertens, L.: Generic programming. An
introduction. In: Swierstra, et al., pp. 28-115, Braga98

Backhouse, R., Sheard, T. (eds.): Workshop on Generic Programming, Informal
proceedings (1998), available at http://www.win.tue.nl/cs/wp/papers.html
Bird, R.S.: An introduction to the theory of lists. In: Broy, M. (ed.) Logic of
Programming and Calculi of Discrete Design. NATO ASI Series, vol. F36, Springer,
Heidelberg (1987)

de Moor, O., Sittampalam, G.: Generic program transformation. In: Swierstra, et
al., pp. 116-149, Braga98

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns — Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading (1995)

Gibbons, J.: Patterns in datatype-generic programming. In: Striegnitz, J., Davis, K.
(eds.) Multiparadigm Programming, John von Neumann Institute for Computing
(NIC), First International Workshop on Declarative Programming in the Context
of Object-Oriented Languages (DPCOOQOL), vol. 27 (2003)

Hinze, R., Jeuring, J.: Generic Haskell: Applications. In: Backhouse and Gibbons,
pp. 57-96, gp03

Hinze, R., Jeuring, J.: Generic Haskell: Practice and theory. In: Backhouse and
Gibbons, pp. 1-56, gp03

Hoogendijk, P., Backhouse, R.: When do datatypes commute? In: Moggi, E.,
Rosolini, G. (eds.) CTCS 1997. LNCS, vol. 1290, pp. 242-260. Springer, Heidelberg
(1997)

Jansson, P., Jeuring, J.: PolyP - a polytypic programming language extension.
In: POPL ’97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 470-482. ACM Press, New York (1997)

Jazayeri, M., Musser, D.R., Loos, R.G.K. (eds.): Generic Programming. LNCS,
vol. 1766. Springer, Heidelberg (2000), at

http://www.cs.rpi.edu/ musser/gp/dagstuhl/

Jeuring, J., Jansson, P.: Polytypic programming. In: Launchbury, J., Sheard, T.,
Meijer, E. (eds.) Advanced Functional Programming. LNCS, vol. 1129, pp. 68-114.
Springer, Heidelberg (1996)

Sheard, T.: Using MetaML: a staged programming language. In: Swierstra, et al.,
pp. 207-239, Braga98

Swierstra, S.D., Oliveira, J.N. (eds.): AFP 1998. LNCS, vol. 1608. Springer, Hei-
delberg (1999)

Wadler, P.: Theorems for free. In: 4’th Symposium on Functional Programming
Languages and Computer Architecture, pp. 347-359. ACM, London (1989)

Contributors

Thorsten Altenkirch
School of Computer Science and Information Technology,
University of Nottingham, Nottingham, NG8 1BB, UK
txa@cs.nott.ac.uk
http://www.cs.nott.ac.uk/ txa/.

Roland Backhouse
School of Computer Science and Information Technology,
University of Nottingham, Nottingham, NG8 1BB, UK
rcb@cs.nott.ac.uk
http://www.cs.nott.ac.uk/ rcb/.

Jeremy Gibbons
Computing Laboratory, University of Oxford, Oxford, OX1 3QD, UK
jeremy.gibbons@comlab.ox.ac.uk
http://www.comlab.ox.ac.uk/jeremy.gibbons/.

Ralf Hinze
Institut fiir Informatik ITI, Universitdt Bonn, Romerstrafle 164,
53117 Bonn, Germany
ralf@informatik.uni-bonn.de
http://www.informatik.uni-bonn.de/ ralf/.

Johan Jeuring
Institute of Information and Computing Sciences, Utrecht University,
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands
and
Open University, Heerlen, The Netherlands
johanj@cs.uu.nl
http://www.cs.uu.nl/~johanj/

Ralf Lammel
Data Programmability Team, Microsoft Corporation, Redmond WA, USA
ralf.lammel@microsoft.com
http://homepages.cwi.nl/"ralf/.

Andres Lsh
Institut fiir Informatik ITI, Universitdt Bonn, Romerstrafie 164,
53117 Bonn, Germany.
loeh@informatik.uni-bonn.de
http://www.informatik.uni-bonn.de/~loeh/.

X Contributors

Conor McBride
School of Computer Science and Information Technology,
University of Nottingham, Nottingham, NG8 1BB, UK
ctm@cs.nott.ac.uk
http://www.cs.nott.ac.uk/ ctm/.

Erik Meijer
SQL Server, Microsoft Corporation, Redmond WA, USA
emeijer@microsoft.com
http://research.microsoft.com/“emeijer/.

Peter Morris
School of Computer Science and Information Technology,
University of Nottingham, Nottingham, NG8 1BB, UK
pwm@cs.nott.ac.uk
http://www.cs.nott.ac.uk/ pwm/.

Tim Sheard
Computer Science Department, Maseeh College of Engineering and
Computer Science, Portland State University, Portland OR, USA
sheard@cs.pdx.edu
http://web.cecs.pdx.edu/ sheard/

Table of Contents

Datatype-Generic Programming

Jeremy Gibbons

Comparing Approaches to Generic Programming in Haskell

Ralf Hinze, Johan Jeuring, and Andres Lth

Ralf Hinze and Andres Loh

Generic Programming with Dependent Types.............

Thorsten Altenkirch, Conor McBride, and Peter Morris

Generic Programming in Qmega

Tim Sheard

Revealing the X/O Impedance Mismatch.................

Ralf Lammel and Erik Meijer

Author Index

Datatype-Generic Programming

Jeremy Gibbons

Oxford University Computing Laboratory
Wolfson Building, Parks Road
Oxford OX1 3QD, United Kingdom
http://www.comlab.ox.ac.uk/jeremy.gibbons/

Abstract. Generic programming aims to increase the flexibility of pro-
gramming languages, by expanding the possibilities for parametriza-
tion — ideally, without also expanding the possibilities for uncaught
errors. The term means different things to different people: parametric
polymorphism, data abstraction, meta-programming, and so on. We use
it to mean polytypism, that is, parametrization by the shape of data
structures rather than their contents. To avoid confusion with other
uses, we have coined the qualified term datatype-generic programming
for this purpose. In these lecture notes, we expand on the definition of
datatype-generic programming, and present some examples of datatype-
generic programs. We also explore the connection with design patterns in
object-oriented programming; in particular, we argue that certain design
patterns are just higher-order datatype-generic programs.

1 Introduction

Generic programming is about making programming languages more flexible
without compromising safety. Both sides of this equation are important, and
becoming more so as we seek to do more and more with computer systems,
while becoming ever more dependent on their reliability.

The term ‘generic programming’ means different things to different people,
because they have different ideas about how to achieve the common goal of com-
bining flexibility and safety. To some people, it means parametric polymorphism;
to others, it means libraries of algorithms and data structures; to another group,
it means reflection and meta-programming; to us, it means polytypism, that is,
type-safe parametrization by a datatype. Rather than trying to impose our mean-
ing on the other users of the term, or risk confusion by ignoring the other uses,
we have chosen to coin the more specific term datatype-generic programming.
We look in more detail at what we mean by ‘datatype-generic programming’,
and how it relates to what others mean by ‘generic programming’, in Section 21

Among the various approaches to datatype-generic programming, one is what
we have called elsewhere origami programming [38], and what others have vari-
ously called constructive algorithmics [T2I123], Squiggol [93], bananas and lenses
[101], the Bird-Meertens Formalism [122/52], and the algebra of programming
[9], among other names. This is a style of functional (or relational) programming

R. Backhouse et al. (Eds.): Datatype-Generic Programming 2006, LNCS 4719, pp. 1f71], 2007.
© Springer-Verlag Berlin Heidelberg 2007

http://www.comlab.ox.ac.uk/jeremy.gibbons/

2 J. Gibbons

based on maps, folds, unfolds and other such higher-order structured recursion
operators. Malcolm [92], building on earlier theoretical work by Hagino [56],
showed how the existing ad-hoc datatype-specific recursion operators (maps and
folds on lists, on binary trees, and so on) could be unified datatype-generically.
We explain this school of programming in Section

The origami approach to datatype-generic programming offers a number of
benefits, not least of which is the support it provides for reasoning about recur-
sive programs. But one of the reasons for our interest in the approach is that it
seems to offer a good way of capturing precisely the essence of a number of the so-
called Gang of Four design patterns, or reusable abstractions in object-oriented
software [35]. This is appealing, because without some kind of datatype-generic
constructs, these patterns can only be expressed extra-linguistically, ‘as prose,
pictures, and prototypes’, rather than captured in a library, analysed and reused.
We argue this case in Section[d], by presenting higher-order datatype-generic pro-
grams capturing ORIGAMI, a small suite of patterns for recursive data structures.

A declarative style of origami programming seems to capture well the compu-
tational structure of at least some of these patterns. But because they are usually
applied in an imperative setting, they generally involve impure aspects too; a
declarative approach does not capture those aspects well. The standard approach
the functional programming community now takes to incorporating impure fea-
tures in a pure setting is by way of monads [T05/135], which elegantly model
all sorts of impure effects such as state, I/O, exceptions and non-determinism.
More recently, McBride and Paterson have introduced the notion of idiom or
applicative functor [95], a slight generalization of monads with better compo-
sitional properties. One consequence of their definitions is a datatype-generic
means of traversing collections ‘idiomatically’, incorporating both pure accumu-
lations and impure effects. In Section [we explore the extent to which this
construction offers a more faithful higher-order datatype-generic model of the
ITERATOR design pattern specifically.

These lecture notes synthesize ideas and results from earlier publications,
rather than presenting much that is new. In particular, Section [is a summary
of two earlier sets of lectures [37I38]; Section [recaps the content of a tutorial
presented at ECOOP [39] and OOPSLA [40], and subsequently published in a
short paper [41]; Section [l reports on some more recent joint work with Bruno
Oliveira [44]. Much of this work took place within the EPSRC-funded Datatype-
Generic Programming project at Oxford and Nottingham, of which this Spring
School marks the final milestone.

2 Generic Programming

Generic programming usually manifests itself as a kind of parametrization. By
abstracting from the differences in what would otherwise be separate but similar
specific programs, one can make a single unified generic program. Instantiating
the parameter in various ways retrieves the various specific programs one started
with. Ideally, the abstraction increases expressivity, when some instantiations of

Datatype-Generic Programming 3

the parameter yield new programs in addition to the original ones; otherwise, all
one has gained is some elimination of duplication and a warm fuzzy feeling. The
different interpretations of the term ‘generic programming’ arise from different
notions of what constitutes a ‘parameter’.

Moreover, a parametrization is usually only called ‘generic’ programming if it
is of a ‘non-traditional’ kind; by definition, traditional kinds of parametrization
give rise only to traditional programming, not generic programming. (This is
analogous to the so-called Al e ect: Rodney Brooks, director of MIT’s Artificial
Intelligence Laboratory, quoted in [79], observes that ‘Every time we figure out a
piece of [Al], it stops being magical; we say, “Oh, that’s just a computation” ’.)
Therefore, ‘genericity’ is in the eye of the beholder, with beholders from dif-
ferent programming traditions having different interpretations of the term. No
doubt by-value and by-reference parameter-passing mechanisms for arguments
to procedures, as found in Pascal [74], look like ‘generic programming’ to an
assembly-language programmer with no such tools at their disposal.

In this section, we review a number of interpretations of ‘genericity’ in terms of
the kind of parametrization they support. Parametrization by value is the kind of
parameter-passing mechanism familiar from most programming languages, and
while (as argued above) this would not normally be considered ‘generic program-
ming’, we include it for completeness; parametrization by type is what is nor-
mally known as polymorphism; parametrization by function is sometimes called
‘higher-order programming’, and is really just parametrization by value where
the values are functions; parametrization by structure involves passing ‘modules’
with a varying private implementation of a fixed public signature or interface;
parametrization by property is a refinement of parametrization by structure,
whereby operations of the signature are required to satisfy some laws; parame-
trization by stage allows programs to be partitioned, with meta-programs that
generate object programs; and parametrization by shape is to parametrization
by type as ‘by function’ is to ‘by value’.

2.1 Genericity by Value

One of the first and most fundamental techniques that any programmer learns
is how to parametrize computations by values. Those old enough to have been
brought up on structured programming are likely to have been given exercises
to write programs to draw simple ASCII art: Whatever the scenario, students
soon realise the futility of hard-wiring fixed behaviour into programs:

procedure Triangle4;

begin
WriteString ("*"); WriteLn;
WriteString ("**"); WriteLn;
WriteString ("#*x"); WriteLn;
WriteString ("***x*"); WriteLn
end;

and the benefits of abstracting that behaviour into parameters:

4 J. Gibbons

procedure Triangle (Side : cardinal);
begin
var Row, Col : cardinal,;
for Row := 1 to Side do begin
for Col :=1 to Row do WriteChar (’>*’);
WriteLn
end
end

Instead of a parameterless program that always performs the same computation,
one ends up with a program with formal parameters, performing different but
related computations depending on the actual parameters passed: a function.

2.2 Genericity by Type

Suppose that one wants a datatype of lists of integers, and a function to append
two such lists. These are written in Haskell [I12] as follows:

data Listl = Nill | Consl Integer Listl

appendl :: Listl — Listl — Listl
appendl Nill ys =ys
appendl (Consl x xs) ys = Consl x (appendl xs ys)

Suppose in addition that one wanted a datatype and an append function for lists
of characters:

data ListC = NilC | ConsC Char ListC

appendC :: ListC — ListC — ListC
appendC NilC yS =Ys
appendC (ConsC x xs)ys = ConsC x (appendC xs ys)

It is tedious to repeat similar definitions in this way, and it doesn’t take much vi-
sion to realise that the repetition is unnecessary: the definitions of the datatypes
Listl and ListC are essentially identical, as are the definitions of the functions
appendl and appendC. Apart from the necessity in Haskell to choose distinct
names, the only difference in the two datatype definitions is the type of list
elements, Integer or Char. Abstracting from this hard-wired constant leads to
a single polymorphic datatype parametrized by another type, the type of list
elements:

data List a = Nil | Cons a (List a)

(The term ‘parametric datatype’ would probably be more precise, but ‘polymor-
phic datatype’ is well established.) Unifying the two list datatypes in this way
unifies the two programs too, into a single polymorphic program:

append :: List a — List a — List a
append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)

Datatype-Generic Programming 5

There is a precise technical sense in which the process of abstraction by which
one extracts type parameters reflects that by which one extracts value parame-
ters. In Haskell, our definition of the polymorphic datatype List introduces a
polymorphic value Nil of type List a for any type a; in the polymorphic lambda
calculus [5ITT6], the polymorphism is made manifest in a type parameter: Nil
would have type Aa.Lista abstracted on the list element type a, and Nil 7
would have type List 7 for some specific element type 7.

This kind of type abstraction is called parametric polymorphism. It entails
that the instantiated behaviour is uniform in the type parameter, and cannot
depend on what actual parameter it is instantiated to. Informally, this means
that a polymorphic function cannot examine elements of polymorphic types, but
can merely rearrange them. Formally, this intuition was captured by Reynolds
in his abstraction theorem [II7], generalized by Wadler to the parametricity
theorem and popularized under the slogan ‘Theorems for Free’ [132]. In the case
of append, (a corollary of) the free theorem states that, for any function a of
the same type as append,

a (mapL f xs) (mapL f ys) = mapL f (a xsys)

where the function mapL (explained in Section [Z3] below) applies its first argu-
ment, a function, to every element of its second argument, a list.

Related to but not quite the same as parametric polymorphism is what
Cardelli and Wegner [16] call inclusion polymorphism. This is the kind of poly-
morphism arising in object-oriented languages. Consider, for example, the fol-
lowing Java method:

public void addObserver (Observer obs){
observers.addElement (obs);

}

This method takes a parameter obs of varying type, as does the Haskell func-
tion append; moreover, it behaves uniformly in the type of the actual parameter
passed. However, it doesn’t accept parameters of an arbitrary type, like append
does, but only parameters whose type is included in the type Observer. (Al-
ternatively, one could say that the method takes a parameter exactly of type
Observer, but that subtypes of Observer are subsumed within this type.) We
discuss the relationship between inclusion polymorphism and parametric poly-
morphism, and between these two and so-called ad-hoc forms of polymorphism,
in Section below.

One well-established interpretation of the term ‘generic programming’ is ex-
actly as embodied by parametric polymorphism and inclusion polymorphism.
Cardelli and Wegner [T6], p. 475] state that ‘the functions that exhibit paramet-
ric polymorphism are [...] called generic functions’, and give length :: List a —
Integer as an example. Paradigmatic languages exhibiting parametric polymor-
phism are ML [104] and Haskell [I12], which provide (variations on) Hindley—
Milner-Damas typing [103J23]. These have influenced the ‘generics’ in recent
versions of Java [I3] and C# [R0]. (On the other hand, CLOS [81] also uses the
term ‘generic function’, but in a sense related to inclusion polymorphism.)

6 J. Gibbons

Ada83 [1] had a notion of generics, by which procedures and ‘packages’ (mod-
ules) can be parametrized by values, types, procedures (which gives a kind of
higher-order parametrization, as discussed in Section 2.3)) and packages (which
gives what we call parametrization by structure, and discuss in Section 24]).
For example, the code below shows: (1) the declaration of a generic subprogram
Swap, parametrized by a type Element; (2) the generic body of the subprogram,
which makes use of the formal parameter Element; and (3) the instantiation of
the generic unit to make a non-generic subprogram that may be used in the
same way as any other subprogram.

generic
type Element is private;
procedure Swap (X,Y :inout Element); - (1)

procedure Swap (X,Y :inout Element) is - (2)
Z : constant Element := X;

begin
X:=Y;
Y :=2Z;

end Swap;

procedure Swaplnteger is new Swap (Integer); -- (3)

However, Ada generic units are templates for their non-generic counterparts,
as are the C++ templates they inspired, and cannot be used until they are
instantiated; Cardelli and Wegner observe that this gives the advantage that
instantiation-specific compiler optimizations may be performed, but aver that
‘in true polymorphic systems, code is generated only once for every generic
procedure’ [16, p.479].

2.3 Genericity by Function

Higher-order programs are programs parametrized by other programs. We men-
tioned above that Ada83 generics allow parametrization by procedure; so do
languages in the Algol family [ITIITOSIT38128]. However, the usefulness of higher-
order parametrization is greatly reduced in these languages by the inability to
express actual procedure parameters anonymously in place. Higher-order para-
metrization comes into its own in functional programming, which promotes ex-
actly this feature: naturally enough, making functions first-class citizens.

Suppose one had strings, represented as lists of characters, that one wanted
to convert to uppercase, perhaps for the purpose of normalization:

stringToUpper :: List Char — List Char
stringToUpper Nil = Nil
stringToUpper (Cons x xs) = Cons (toUpper x) (stringToUpper xs)

where toUpper converts characters to uppercase. Suppose also that one had a
list of integers for people’s ages, which one wanted to classify into young and
old, represented as booleans:

Datatype-Generic Programming 7

classifyAges :: List Integer — List Bool
classifyAges Nil = Nil
classifyAges (Cons x xs) = Cons (x < 30) (classifyAges xs)

These two functions, and many others, follow a common pattern. What differs is
in fact a value, but one that is higher-order rather than first-order: the function
to apply to each list element, which in the first case is the function toUpper, and
in the second is the predicate (<30). What is common between the two is the
function mapL, mentioned in Section 2.2 above:

mapL :: (a — b) — (List a — List b)
mapL f Nil = Nil
mapL f (Cons x xs) = Cons (f x) (mapL f xs)

We treat this kind of parametrization separately from parametrization by
first-order value, because it has far-reaching consequences. Among other things,
it lets programmers express control structures within the language, rather than
having to extend the language. For example, one might already consider mapL
to be a programmer-defined control construct. For another example, recall the
parametrically polymorphic append function from Section

append :: Lista — List a — List a
append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)

A second function, concat, concatenates a list of lists into one long list:

concat :: List (List a) — List a
concat Nil = Nil
concat (Cons xs xss) = append xs (concat xss)

A third sums a list of integers:

sum :: List Integer — Integer
sum Nil =0
sum (Cons X XS) = X + SuUm xs

Each of the three programs above traverses its list argument in exactly the
same way. Abstracting from their differences allows us to capture that control
structure as a pattern of recursion. The common pattern is called a ‘fold’:

foldL::b — (a = b —b) — Lista —b
foldL n ¢ Nil n
foldL n c (Cons x xs) = ¢

x (foldL n ¢ xs)

(We write the suffix ‘L’ to denote an operation over lists; Sections 7] and [
discuss generalizations to other datatypes. It so happens that this function is
equivalent to the function foldr — ‘fold from the right’ — in the Haskell standard

8 J. Gibbons

library [112].) Instances of foldL replace the list constructors Nil and Cons with
supplied arguments:

append xs ys = foldL ys Cons xs
concat = foldL Nil append
sum = foldL 0 (+)

In fact, mapL turns out to be another instance of foldL:
mapL f = foldL Nil (Cons o f)

where o is function composition (itself another higher-order operator).

2.4 Genericity by Structure

Perhaps the most popular interpretation of the term ‘generic programming’ is
as embodied in the C++ Standard Template Library, an object-oriented class
library providing containers, iterators and algorithms for many datatypes [4].
Indeed, some writers have taken the STL style as the definition of generic
programming; for example, Siek et al. [T20] define generic programming as ‘a
methodology for program design and implementation that separates data struc-
tures and algorithms through the use of abstract requirement specifications’.

As the name suggests, the STL is implemented using the C++ template mech-
anism, which offers similar facilities to Ada generics: class- and function tem-
plates are parametrized by type- and value parameters. (Indeed, a predecessor
to the STL was an Ada library for list processing [I07].) Within the STL com-
munity more than any other, it is considered essential that genericity imposes
no performance penalty [25/129].

The containers that are provided in the STL are parametrically polymorphic
datatypes, parametrized by the element type; these are further classified into se-
quence containers (such as Vector, String and Deque) and associative containers
(such as Set, Multiset and Map).

Bulk access to the elements of a container type is provided by iterators. These
are abstractions of C++ pointers to elements, and so support pointer arithmetic.
They are further classified according to what pointer operations they support: in-
put iterators (which can be incremented, copied, assigned, compared for equality,
and read from — that is, used as r-values), output iterators (which are similar,
but can only be written to — that is, used as l-values), forwards iterators (which
refine both input and output iterators), bidirectional iterators (which can also
retreat, that is, supporting decrement), and random-access iterators (which can
move any number of steps in one operation, that is, supporting addition).

Tterators form the interface between container types and algorithms over data
structures. The algorithms provided in the STL include many general-purpose
operations such as searching, sorting, filtering, and so on. Rather than operating
directly on containers, an algorithm takes one or more iterators as parameters;
the algorithm is generic, in the sense that it applies to any container that sup-
ports the appropriate kind of iterator.

Datatype-Generic Programming 9

For example, here is a code fragment (taken from [4, §1.1]) implementing a
simplified version of the Unix sort utility.

int main () {
vector (string)v;
string tmp;
while (getline (cin,tmp))
v.push back (tmp);
sort (v.begin (),v.end ());
copy (v.begin (),v.end (), ostream iterator (string)(cout, "\n"));

}

It shows a container v (a vector of strings); applications of generic algorithms
(sort and copy); and a pair of iterators (‘pointers’ v.begin () and v.end () to the
beginning and just past-the-end of the vector v) mediating between them.

In the C++ approach, the exact set of requirements on parameters (such as
the iterator passed to a generic algorithm, or the element type passed to a generic
container) is called a concept. A concept encapsulates the operations required of
a formal type parameter and provided by an actual type parameter. Algorithms
and containers are parametrized by the concept, and instantiated by passing a
structure that implements the concept. For example, the STL’s ‘input iterator’
concept encompasses pointer-like types which support comparison for equality,
copying, assignment, reading, and incrementing. The success of the STL lies
pretty much in the careful choice of such concepts as an organizing principle
for a large library; as Siek and Lumsdaine [121] explain, the same principle has
worked for many other C++ class libraries too.

The C++ template mechanism provides no means to define a concept explic-
itly; it is merely an informal artifact rather than a formal construct. (However,
work is proceeding to formalize concepts as language constructs; see for example
[EAUT2TI53].) In that sense, it is a retrograde step from earlier languages sup-
porting data abstraction. For instance, Liskov’s CLU language [89] from the
mid-1970s had a where clause, for specifying the requirements (names and sig-
natures) on a type parameter to a cluster; the following declaration [89, p13]
for a cluster set parametrized by a type t states that t must support a binary
predicate equal.

set = cluster [t : type] is create, member, size, insert, delete, elements
where t has equal : proctype (t,t) returns (bool)

This retrograde step is somewhat ironic, since CLU’s clusters were, via Ada
generics, the inspiration for the C++ template mechanism in the first place.

The notion in Haskell analogous to C++’s concepts, and the basis for current
proposals to to provide linguistic support for concepts in C++ [53], is the type
class, which also captures the requirements required of and provided by types,
but which is formally part of the language. For example, a function sort in
Haskell might have the following type:

sort :: Ord a = List a — List a

10 J. Gibbons

The constraint ‘Ord a =’ is a type class context; the function sort is not para-
metrically polymorphic, because it is not applicable to all types of list element,
only those in the type class Ord. The type class Ord includes exactly those types
that support the operation <, and might be defined in Haskell as follows:

class Ord a where
(£):a—a— Bool

(The actual definition is more complex than this [T12]; but this simpler version
serves for illustration.) Various types are instance of the type class, by virtue of
supporting a comparison operation:

instance Ord Integer where
(m < n) = isNonNegative (n —m)

Attempting to apply < to two values of some type that is not in the type class
Ord, or sort to a list of such values, is a type error, and is caught statically. In
contrast, while the equivalent error using the C+4 STL ‘less-than comparable’
concept is still a statically caught type error, it is caught at template instan-
tiation time, since there is no way of declaring the uninstantiated template’s
dependence on the concept.

As we stated above, the kind of polymorphism provided by C++ STL concepts
and Haskell type classes is not parametric, because it is not universal. For the
same reason, neither is it inclusion polymorphism, even though C++ concepts
and Haskell type classes both form hierarchies. In fact, the member functions of
the Haskell type class, such as the operation (<) :: Ord a = a — a — Bool, are
ad-hoc polymorphic, which is to say non-uniform: there is no requirement, and
indeed it is generally not the case, that definitions of < on different types will
be implemented using the same code.

2.5 Genericity by Property

We have seen that generic programming in the C++ sense revolves around con-
cepts, which are abstractions of the requirements on and provisions of a type
parameter, specifically in terms of the operations available. In fact, in typical
usage, concepts are more elaborate than this; as well as signatures of operations,
the concept might specify the laws these operations satisfy, and non-functional
characteristics such as the asymptotic complexities of the operations in terms of
time and space. For example, the ‘less-than comparable’ concept in the STL
stipulates that the ordering should be a partial ordering, and the ‘random-
access iterator’ concept stipulates that addition to and subtraction from the
pointer should take constant time. Correctness of operation signatures can be
verified at instantiation time, and this information is useful to a compiler, for
example in providing efficient dispatching. The laws satisfied by operations and
non-functional characteristics such as complexity cannot be verified in general,
although testing frameworks such as QuickCheck [I8] and JUnit [34] can go some
way towards validation; this information nevertheless might still be useful to a
sophisticated optimizing compiler.

Datatype-Generic Programming 11

In the Haskell setting, the formal part of a type class declaration states the
names and signatures of the operations provided, and the equally important
but informal accompanying documentation may stipulate additional properties,
typically in the form of axioms. For example, the Ord type class might stipulate
that < forms a total order or a total preorder; we make use later of a type class
Monoid:

class Monoid m where
/)
(®):m—->m —m

with the usual monoid laws:
Xe(yoz)=(xoy) oz

X @0
0@ x

X
X

In Section Bl we make use of a two-parameter version of the following one-
parameter Functor type class:

class Functor f where
fmap :: (a - b) — (fa—fh)

(Strictly speaking, Functor is a constructor class rather than a type class, since
its members are type constructors rather than base types: in Haskell terminology,
‘types of kind * — %’ rather than ‘types of kind *’, where kinds classify types in
the same way that types classify values. But in these lecture notes, we use the
term ‘type class’ even for classes of type constructors.) The intention is that this
class contains types supporting functions like mapL.:

instance Functor List where
fmap = mapL

The informal intention ‘functions like mapL’ can be captured more formally in
terms of the functor laws:

fmap (f og) =fmap f ofmap g
fmap id =id

In Section Bl we generalize the Monad type class, a subclass of Functor:

class Functor m = Monad m where
return :a — ma
(>=) »ma—(a—mb)—mb

(The Haskell 98 standard library [I12] omits the Functor context, but without
any increase in generality, since the operation fmap can be reconstructed from
return and >=.) Instances of Monad correspond to types of ‘computations with

12 J. Gibbons

impure effects’. The exception monad is a simple instance; a ‘computation yield-
ing an a’ might fail.

data Maybe a = Nothing | Just a

foldM ::b — (a — b) — Maybe a — b
foldM y f Nothing =y
foldM y f (Just x) = f x

instance Functor Maybe where

fmap f Nothing = Nothing

fmap f (Just x) = Just (f x)
instance Monad Maybe where

return a = Just a

mx >= k = foldM Nothing k mx
raise :: Maybe a -- raise an exception
raise = Nothing
trycatch :: (a — b) — b — Maybe a — b -- handle an exception
trycatch f y = foldM y f

Another instance is the state monad, in which a ‘computation yielding an a’ also
affects a state of type s, amounting to a function of type s — (a,s):

newtype State sa = St (s — (a,s))

runSt :: Statesa — s — (a,s)
runSt (Stf) =f

instance Functor (State s) where

fmap f mx = St (As — let (a,s’) = runSt mx s in (f a,s’))
instance Monad (State s) where

returna =St (As — (a,9))

mx >=k = St (As — let (a,s’) = runSt mx s inrunSt (k a) s’)
put ::s — States () -- write to the state
puts =St(A —((),s))
get :: States s -- read from the state
get = St (As — (s,9))

Haskell provides a convenient piece of syntactic sugar called ‘do notation’ [134],
allowing an imperative style of programming for monadic computations. This
is defined by translation into expressions involving return and >=; a simplified
version of the full translation [I12} §3.14] is as follows:

do {mx} = mx
do {X « mx;stmts} = mx >= Ax — do {stmts }
do { mx; stmts } = mx >= A\() — do {stmts }

In addition to the laws inherited from the Functor type class, a Monad instance
must satisfy the following three laws:

Datatype-Generic Programming 13

return a >=k =ka
m >= return =m
m>= (A - kx>=h)=(m>=Kk)>=h

The first two are kinds of unit law, and the last one a kind of associative law.
Their importance is in justifying the use of the imperative style of syntax; for
example, they justify flattening of nested blocks:

do {p;do {q;r};s} =do{p;q;r;s}

We leave it to the reader to verify that the Maybe and State instances of the
Monad class do indeed satisfy these laws.

More elaborate examples of genericity by property arise from more sophisti-
cated mathematical structures. For example, Horner’s rule for polynomial eval-
uation [2]] can be parametrized by a semiring, an extremal path finder by a
regular algebra [B[7], and a greedy algorithm by a matroid or greedoid structure
[27185]. Mathematical structures are fertile grounds for finding more such exam-
ples; the Axiom programming language for computer algebra [73I14] now has a
library of over 10,000 ‘domains’ (types).

Whereas genericity by structure is an outcome of the work on abstract
datatypes [90], genericity by property follows from the enrichment of that work
to include equational constraints, leading to algebraic specifications [28129], as
realised in languages such as Larch [55] and Casl [20/8].

2.6 Genericity by Stage

Another interpretation of the term ‘generic programming’ covers various flavours
of metaprogramming, that is, the development of programs that construct or ma-
nipulate other programs. This field encompasses program generators such as lex
[75, §A.2] and yacc [75] §A.3], reflection techniques allowing a program (typically
in a dynamically typed language) to observe and possibly modify its structure
and behaviour [33], generative programming for the automated customization,
configuration and assembly of components [22], and multi-stage programming for
partitioning computations into phases [125].

For example, an active library [129] might perform domain-specific optimiza-
tions such as unrolling inner loops: rather than implementing numerous slightly
different components for different loop bounds, the library could provide a single
generic metaprogram that specializes to them all. A compiler could even be con-
sidered a generative metaprogram: rather than writing machine code directly,
the programmer writes meta-machine code in a high-level language, and leaves
the generation of the machine code itself to the compiler.

In fact, the C++ template mechanism is surprisingly expressive, and already
provides some kind of metaprogramming facility. Template instantiation takes
place at compile time, so one can think of a C+4 program with templates as a
two-stage computation; as noted above, several high-performance numerical li-
braries rely on templates’ generative properties [129]. The template instantiation
mechanism turns out to be Turing complete; Unruh [126] gives the unsettling

14 J. Gibbons

example of a program whose compilation yields the prime numbers as error
messages, Czarnecki and Eisenecker [22] show the Turing-completeness of the
template mechanism by implementing a rudimentary Lisp interpreter as a tem-
plate meta-program, and Alexandrescu [3] presents a tour de force of unexpected
applications of templates.

2.7 Genericity by Shape

Recall the polymorphic datatype List introduced in Section 222 and the corre-
sponding polymorphic higher-order function foldL in Section [2:3} recall also the
polymorphic datatype Maybe and higher-order function foldM from Section 2.5l
One might also have a polymorphic datatype of binary trees:

data Btree a = Tip a | Bin (Btree a) (Btree a)

The familiar process of abstraction from a collection of similar programs would
lead one to identify the natural pattern of recursion on these trees as another
higher-order function:

foldB :: (a - b) - (b —b —b) - Btreea — b
foldB t b (Tip x) =tx
foldB t b (Bin xs ys) = b (foldB t b xs) (foldB t b ys)

For example, instances of foldB reflect a tree, and flatten it to a list, in both
cases replacing the tree constructors Tip and Bin with supplied constructors:

reflect :: Btree a — Btree a
reflect = foldB Tip nib where nib xs ys = Bin ys xs

flatten :: Btree a — List a
flatten = foldB wrap append where wrap x = Cons x Nil

We have seen that each kind of parametrization allows some recurring patterns
to be captured. For example, parametric polymorphism unifies commonality of
computation, abstracting from variability in irrelevant typing information, and
higher-order functions unify commonality of program shape, abstracting from
variability in some of the details.

But what about the two higher-order polymorphic programs foldL and foldB ?
We can see that they have something in common: both replace constructors by
supplied arguments; both have patterns of recursion that follow the datatype
definition, with one clause per datatype variant and one recursive call per sub-
structure. But neither parametric polymorphism, nor higher-order functions, nor
module signatures suffice to capture this kind of commonality.

In fact, what differs between the two fold operators is the shape of the data on
which they operate, and hence the shape of the programs themselves. The kind
of parametrization required is by this shape; that is, by the datatype or type
constructor (such as List or Tree) concerned. We call this datatype genericity;
it allows the capture of recurring patterns in programs of di erent shapes. In

Datatype-Generic Programming 15

Section [below, we explain the definition of a datatype-generic operation fold
with the following type:

fold :: Bifunctor s = (sab —b) — Fixsa —b

Here, in addition to the type a of collection elements and the fold body (a func-
tion of type sab — b), the shape parameter s varies; the type class Bifunctor
expresses the constraints we place on its choice. The shape parameter deter-
mines the shape of the input data; for one instantiation of s, the type Fix s a
is isomorphic to List a, and for another instantiation it is isomorphic to Tree a.
(So the parametrization is strictly speaking not by the recursive datatype List
itself, but by the bifunctor s that yields the shape of Lists.) The same shape
parameter also determines the type of the fold body, supplied as an argument
with which to replace the constructors.

The Datatype-Generic Programming project at Oxford and Nottingham [43]
has been investigating programs parametrized by datatypes, that is, by type
constructors such as ‘list of” and ‘tree of’. Such programs might be paramet-
rically datatype-generic, as with fold above, when the behaviour is uniform in
the shape parameter. Since the shape parameter is of higher kind, this is a
higher-order parametricity property, but it is of the same flavour as first-order
parametricity [TT7II32], stating a form of coherence between instances of fold
for different shapes. A similar class of programs is captured by Jay’s theory of
shapely polymorphism [72].

Alternatively, such programs might be ad-hoc datatype-generic, when the be-
haviour exploits that shape in some essential manner. Typical examples of the
latter are pretty printers and marshallers; these can be defined once and for all
for lists, trees, and so on, in a typesafe way, but not in a way that guarantees any
kind of uniformity in behaviour at the instances for different shapes. This ap-
proach to datatype genericity has been variously called polytypism [68], structural
polymorphism [I18] or typecase [I3T26], and is the meaning given to ‘generic pro-
gramming’ by the Generic Haskell [6091] team. Whatever the name, functions
are defined inductively by case analysis on the structure of datatypes; the dif-
ferent approaches differ slightly in the class of datatypes covered. For example,
here is a Generic Haskell definition of datatype-generic encoding to a list of bits.

type Encode {{x]} t =t — [Bool]
type Encode{k — I} t =Va. Encode{k]} a — Encode{l]} (t a)

encode {Jt :: k[} :: Encode {kT} t
encode {|Char [} c = encodeChar ¢
encode {Int[} n = encodelnt n

encode {Unit[} unit =]

encode{+[} enaenb (Inl a) = False :ena a
encode{+[} enaenb (Inrb) = True:enbb
encode {:x:} enaenb (a :x:b) =enaa Henbb

The generic function encode works for any type constructed from characters and
integers using sums and products; these cases are defined explicitly, and the cases

16 J. Gibbons

for type abstraction, application and recursion are generated automatically. Note
that instances of encode are very different for different type parameters, not even
taking the same number of arguments. In fact, the instances have different kinds
(as mentioned in Section 25 and discussed further in Hinze and others’ two
chapters [61 §3.1] and [63 §2.1] in this volume), and type-indexed values have
kind-indexed types [57].

As we have seen, ad-hoc datatype-generic definitions are typically given by
case analysis over the structure of types. One has the flexibility to define differ-
ent behaviour in different branches, and maybe even to customize the behaviour
for specific types; consequently, there is no guarantee or check that the behav-
iours in different branches conform, except by type. This is in contrast to the
parametrically datatype-generic definition of fold cited above; there, one has less
flexibility, but instances at different types necessarily behave uniformly. Ad-hoc
datatype genericity is more general than parametric; for example, it is difficult to
see how to define datatype-generic encoding parametrically, and conversely, any
parametric definition can be expanded into an ad-hoc one. However, parametric
datatype genericity offers better prospects for reasoning, and is to be preferred
when it is applicable.

We consider parametric datatype genericity to be the ‘gold standard’, and in
the remainder of these lecture notes, we concentrate on parametric datatype-
generic definitions where possible. In fact, it is usually the case that one must
provide an ad-hoc datatype-generic hook initially, but then one can derive a num-
ber of parametrically datatype-generic definitions from this. In Sections B and [l
we suppose an (ad-hoc) datatype-generic operator bimap, and from this derive
various (parametrically) datatype-generic recursion operators. In Section 5.2 we
suppose a different (ad-hoc) datatype-generic operator traverse, and from this
derive various (parametrically) datatype-generic traversal operators. Clarke and
Loh [19] use the name generic abstractions for parametrically datatype-generic
functions defined in terms of ad-hoc datatype-generic functions.

Datatype genericity is different from various other interpretations of generic
programming outlined above. It is not just a matter of parametric polymorphism,
at least not in a straighforward way; for example, parametric polymorphism ab-
stracts from the occurrence of ‘integer’ in ‘lists of integers’, whereas datatype
genericity abstracts from the occurrence of ‘list’. It is not just interface con-
formance, as with concept satisfaction in the STL; although the latter allows
abstraction from the shape of data, it does not allow exploitation of the shape
of data, as required for the data compression and marshalling examples above.
Finally, it is not metaprogramming: although some flavours of metaprogramming
(such as reflection) can simulate datatype-generic computations, they typically
do so at the cost of static checking.

2.8 Universal vs Ad-Hoc Genericity

Strachey’s seminal notes on programming languages [124] make the fundamen-
tal distinction between parametric polymorphism, in which a function works
uniformly on a range of types, usually with a common structure, and ad-hoc

Datatype-Generic Programming 17

polymorphism, in which a function works (or appears to work) on several dif-
ferent types, but these need not have a common structure, and the behaviour
might be different at different types.

Cardelli and Wegner [16] refine this distinction. They rename the former to
universal polymorphism, and divide this into parametric polymorphism again
and inclusion polymorphism. The difference between the two arises from the
different ways in which a value may have multiple types: with parametric poly-
morphism, values and functions implicitly or explicitly take a type parameter, as
discussed in Section with inclusion polymorphism, types are arranged into
a hierarchy, and a value of one type is simultaneously a value of all its super-
types. Cardelli and Wegner also refine ad-hoc polymorphism into overloading, a
syntactic mechanism in which the same function name has different meanings in
different contexts, and coercion, in which a function name has just one meaning,
but semantic conversions are applied to arguments where necessary.

The uppermost of these distinctions can be applied to other kinds of parameter
than types, at least informally. For example, one can distinguish between uni-
versal parametrization by a number, as in the structured program in Section 2]
to draw a triangle of a given size, and ad-hoc parametrization by a number, as in
‘press 1 to listen to the message again, press 2 to return the call, press 3 to delete
the message. .. -style interfaces. In the former, there is some coherence between
the instances for different numbers, but in the latter there is not. For another
example, sorting algorithms that use only comparisons obey what is known as
the zero-one principle [21]: if they work correctly on sequences of numbers drawn
from the set {0, 1}, then they work correctly on arbitrary number sequences (and
more generally, where the element type is linearly ordered). Therefore, sorting
algorithms defined using only comparisons are universally parametric in the list
elements [24], whereas sorting algorithms using other operations (such as radix
sort, which depends on the ‘digits’ or fields of the list elements) are ad-hoc
parametric, and proving their correctness requires more effort. Data indepen-
dence techniques in model checking [87I8S] are a third illustration. All of these
seem to have some relation to the notion of naturality in category theory, and
(perhaps not surprisingly) Reynolds’ notion of parametricity. For Cardelli and
Wegner, ‘universal polymorphism is considered true polymorphism, whereas ad-
hoc polymorphism is some kind of apparent polymorphism whose polymorphic
character disappears at close range’; by the same token, we might say that uni-
versal parametrization is truly generic, whereas ad-hoc parametrization is only
apparently generic.

2.9 Another Dimension of Classification

Backhouse et al. [7] suggest a second dimension of classification of parametriza-
tion: not only in terms of the varieties of entity that can be abstracted, but
also in terms of what support is provided for this abstraction — the varieties of
construct from which these entities may be abstracted, and whether instances
of those entities can be expressed anonymously in place, or must be defined out
of line and referred to by name.

18 J. Gibbons

For an example of the second kind of distinction, consider values and types
in Haskell 98: values can be parametrized by values (for example, a function
preds taking an integer n to the list [n,n —1,...,1] can be considered as a list
parametrized by an integer), types can be parametrized by types (for example,
the polymorphic list type [a] is parametrized by the element type a), values
can be parametrized by types (for example, the empty list [] is polymorphic,
and really stands for a value of type [a] for any type a), but types cannot
easily be parametrized by values (to capture a type of ‘lists of length n’; one
requires dependent types [96], or some lightweight variant such as generalized
algebraic datatypes [T13/119]). We referred in Section to an example of the
third kind of distinction: although procedures in languages in the Algol family
can be parametrized by other procedures, actual procedure parameters must be
declared out of line and passed by name, rather than being defined on the fly as
lambda expressions.

3 Origami Programming

There is a branch of the mathematics of program construction devoted to the re-
lationship between the structure of programs and the structure of the data they
manipulate [Q2TOTIEIOI37T]. We saw a glimpse of this field in Sections 23
and [Z77] with the definitions of foldL, foldM and foldB respectively: the struc-
ture of each program reflects that of the datatype it traverses, for example in the
number of clauses and the number and position of any recursive references. In
this section, we explore a little further. Folds are not the only program structure
that reflects data structure, although they are often given unfair emphasis [48];
we outline unfolds and builds too, which are two kinds of dual (producing struc-
tured data rather than consuming it), and maps, which are special cases of these
operators, and some simple combinations of all of these. There are many other
datatype-generic patterns of computation that we might also have considered:
paramorphisms [98], apomorphisms [I30], histomorphisms and futumorphisms
[127], metamorphisms [42], dynamorphisms [78], destroy [36], and so on.

The beauty of all of these patterns of computation is the direct relationship
between their shape and that of the data they manipulate; we go on to explain
how both can be parametrized by that shape, yielding datatype-generic patterns
of computation. We recently coined the term origami programming [38] for this
approach to datatype-generic programming, because of its dependence on folds
and unfolds.

3.1 Maps and Folds on Lists
Here is the datatype of lists again.
data List a = Nil | Cons a (List a)

The ‘map’ operator for a datatype applies a given function to every element
of a data structure. In Section 223 we saw the (higher-order, polymorphic, but
list-specific) map operator for lists:

Datatype-Generic Programming 19

mapL :: (a — b) — (List a — List b)
mapL f Nil = Nil
mapL f (Cons x xs) = Cons (f x) (mapL f xs)

The ‘fold’ operator for a datatype collapses a data structure down to a value.
Here is the (again higher-order, polymorphic, but list-specific) fold operator for
lists from Section 2.3

foldL::b — (a — b —b) — Lista —b
foldL e f Nil =e
foldL e f (Cons x xs) =f x (foldL e f xs)

As a simple application of foldL, the function filterL (itself higher-order, poly-
morphic, but list-specific) takes a predicate p and a list xs, and returns the
sublist of xs consisting of those elements that satisfy p.

filterL :: (a — Bool) — List a — List a
filterL p = foldL Nil (add p)
where add p x xs = if p x then Cons X xs else xs

As we saw in Section[Z3] the functions sum, append and concat are also instances
of foldL.

3.2 Unfolds on Lists

The ‘unfold’ operator for a datatype grows a data structure from a value. In a
precise technical sense, it is the dual of the ‘fold’” operator. That duality isn’t so
obvious in the implementation for lists below, but it becomes clearer with the
datatype-generic version we present in Section

unfoldL :: (b — Bool) — (b —a) — (b — b) — b — Lista
unfoldL p f g x
= if p X then Nil
else Cons (f x) (unfoldLp f g (g x))

For example, here are two instances. The function preds returns the list of pre-
decessors of an integer (which will be an infinite list if that integer is negative);
the function takeWhile takes a predicate p and a list xs, and returns the longest
initial segment of xs all of whose elements satisfy p.

preds :: Integer — List Integer
preds = unfoldL (0)id pred wherepredn =n — 1
takeWhile :: (a — Bool) — List a — List a
takeWhile p = unfoldL (firstNot p) head tail
where firstNot p Nil = True
firstNot p (Cons x xs) = not (p X)

20 J. Gibbons

3.3 Origami for Binary Trees

We might go through a similar exercise for a datatype of internally labelled
binary trees.

data Tree a = Empty | Node a (Tree a) (Tree a)
The ‘map’ operator applies a given function to every element of a tree.

mapT :: (a — b) — (Tree a — Tree b)
mapT f Empty = Empty
mapT f (Node x xs ys) = Node (f x) (mapT f xs) (mapT f ys)

The ‘fold’ operator collapses a tree down to a value.

foldT :b—-(a—b—b—b)—>Treea—b
foldT e n Empty =e
foldT e n (Node x xs ys) = n x (foldT e n xs) (foldT e nys)

For example, the function inorder collapses a tree down to a list.

inorder :: Tree a — Lista
inorder = foldT Nil glue

glue x xs ys = append xs (Cons x ys)
The ‘unfold’ operator grows a tree from a value.

unfoldT :: (b — Bool) - (b —a) — (b —b)— (b —b) —b — Treea
unfoldT pf ghx
= if p x then Empty
else Node (f x) (unfoldT pf gh (gx))
(unfoldT p f g h (hx))

For example, the Calkin—Wilf tree, illustrated in Figure [Il contains each of the
positive rationals exactly once:

cwTree :: Tree Rational
cwTree = unfoldT (const False) frac left right (1, 1)
where frac (m,n) =m %n
left (m,n) = (m,m +n)
right (m,n) = (n +m,n)

Here, const a is the function that always returns a, and the operator % con-
structs a rational from its numerator and denominator. For a full derivation of
this algorithm, see [2I49]; briefly, the paths in the tree correspond to traces of
Euclid’s algorithm computing the greatest common divisor of the numerator and
denominator.

Another example of an unfold is given by the function grow that generates a
binary search tree from a list of elements.

Datatype-Generic Programming 21

/\
/\ /\

/\ /\ 2//\5/ /\

1

Fig. 1. The first few levels of the Calkin-Wilf tree

grow :: Ord a = Lista — Tree a
grow = unfoldT isNil head littles bigs

littles (Cons x xs) = filterL (< x) xs
bigs (Cons x xs) = filterL (>X) xs

(where isNil is the predicate that holds precisely of empty lists). As with the
function sort mentioned in Section 224 grow has a type qualified by the context
Ord a: the element type must be ordered.

3.4 Hylomorphisms

An unfold followed by a fold is a common pattern of computation [I01]; the
unfold generates a data structure, and the fold immediately consumes it. For
example, here is a (higher-order, polymorphic, but list-specific) hylomorphism
operator for lists, and an instance for computing factorials: first generate the
predecessors of the input using an unfold, then compute the product of these
predecessors using a fold.

hyloL :: (b — Bool) - (b —a) - (b - b) -c—(a—c—c)—b—c
hyloLpf geh =foldLe h cunfoldLp f g

fact :: Integer — Integer

fact = hyloL (0) id pred 1 (x)

With lazy evaluation, the intermediate data structure is not computed all at
once. It is produced on demand, and each demanded cell consumed immediately.
In fact, the intermediary can be deforested altogether.

hyloL :: (b — Bool) — (b —a) - (b - b) -c—(a—c—c)—b—c
hyloLpf gehx
=if px theneelseh (f x) (hyloLpf geh (g x))

A similar definition can be given for binary trees, as shown below, together with
an instance giving a kind of quicksort (albeit not a very quick one: it is not
in-place, it has a bad space leak, and it takes quadratic time).

22 J. Gibbons

hyloT :: (b — Bool) - (b —a) - (b —b) —» (b —»b) —
c—(@a—c—c—c)—b—c
hyloT pfgig.ehx
=if px thene
else h (f x) (hyloT pf g1 g2eh (g1 X))
(hyloT pf g1 g2eh (g2 x))
gsort :: Ord a = List a — List a
gsort = hyloT isNil head littles bigs Nil glue

3.5 Short-Cut Fusion

Unfolds capture a highly structured pattern of computation for generating re-
cursive data structures. There exist slight generalizations of unfolds, such as
monadic unfolds [T09/I10], apomorphisms [I30] and futumorphisms [127], but
these still all conform to the same structural scheme, and not all programs that
generate data structures fit this scheme [46]. Gill et al. [50] introduced an oper-
ator they called build for unstructured generation of data, in order to simplify
the implementation and broaden the applicability of deforestation optimizations
as discussed in the previous section. During the Spring School, Malcolm Wallace
proposed the alternative term ‘tectomorphism’ for build, maintaining the Greek
naming theme.

The idea behind build is to allow the identification of precisely where in a
program the nodes of a data structure are being generated; then it is straight-
forward for a compiler to fuse a following fold, inlining functions to replace those
constructors and deforesting the data structure altogether. The operator takes
as argument a program with ‘holes’ for constructors, and plugs those holes with
actual constructors.

buildL :: (vb. b — (a — b —b) —b) — Lista
buildL g = g Nil Cons

The function buildL has a rank-two type; the argument g must be parametrically
polymorphic in the constructor arguments, in order to ensure that all uses of
the constructors are abstracted. (In fact, the argument g is the Church encoding
of a list as a polymorphic lambda term, and buildL converts that encoding to a
list as a familiar data structure [59].) We argued above that unfoldL is a dual
to foldL in one sense; we make that sense clear in Section B.8l In another sense,
buildL is foldL’s dual: whereas the fold deletes constructors and replaces them
with something else, the build inserts those constructors.

The beauty of the idea is that fusion with a following fold is simple to state:

foldL e f (buildLg) =gef

Perhaps more importantly, it is also easy for a compiler to exploit.
Build operators are strictly more expressive than unfolds. For instance, it is
possible to define unfoldL in terms of buildL:

Datatype-Generic Programming 23

unfoldL :: (b — Bool) — (b —a) — (b —b) — b — Lista
unfoldL p f g b = buildL (h b)
wherehbnc=ifpbthennelsec (f b) (h(gb)nc)

However, some functions that generate lists can be expressed as an instance of
buildL and not of unfoldL [46]; the well-known fast reverse is an example:

reverse xs = buildL (An ¢ — foldL id (AXx g — gocCX)Xsn)

The disadvantage of buildL compared to unfoldL is a consequence of its unstruc-
tured approach: the former does not support the powerful universal properties
that greatly simplify program calculation with the latter [37].

Of course, there is nothing special about lists in this regard. One can define
build operators for any datatype:

buildT :: (vb. b - (a = b —b —Db) —h) — Tree a
buildT g = g Empty Node

3.6 Datatype Genericity

As we have already argued, data structure determines program structure [64].
It therefore makes sense to abstract from the determining shape, leaving only
what programs of different shape have in common. What datatypes such as List
and Tree have in common is the fact that they are recursive — which is to say,
a datatype Fix, parametrized both by an element type a of basic kind (a plain
type, such as integers or strings), and by a shape type s of higher kind (a type
constructor, such as ‘pairs of’ or ‘lists of’, but in this case with two arguments
rather than one).

dataFixsa=1In(sa (Fixsa))

out :: Fixsa —sa (Fixsa)
out (Inx) =x

Equivalently, we could use a record type with a single named field, and define
both the constructor In and the destructor out at once.

dataFix sa =In{out::sa (Fixsa)}

The generic datatype Fix is what the specific datatypes List and Tree have in
common; the shape parameter s is what varies. Here are three instances of Fix
using different shapes: lists and internally labelled binary trees as seen before,
and also a datatype of externally labelled binary trees.

data ListF ab = NilF | ConsF ab
type List a = Fix ListF a

data TreeF ab = EmptyF | NodeF abb
type Tree a = Fix TreeF a

24 J. Gibbons

data BtreeF ab = TipF a | BinF b b
type Btree a = Fix BtreeF a

Note that the types List and Tree here are equivalent to but different from the
types List in Section Bl and Tree in Section

The datatype Fix s a is a recursive type; the type constructor Fix ties the
recursive knot around the shape s. Typically, as in the three instances above,
the shape s has several variants, including a ‘base case’ independent of the
second argument. But with lazy evaluation, infinite structures are possible, and
so the definition makes sense even with no base case. For example, the datatype
Fix ITreeF a with shape parameter data ITreeF ab = INodeF abb is a type
of infinite internally labelled binary trees, which would suffice for the cwTree
example above.

3.7 Bifunctors

Not all valid binary type constructors s are suitable for Fixing; for example,
function types with the parameter appearing in contravariant (source) positions
cause problems. It turns out that we should restrict attention to (covariant)
bifunctors, which support a bimap operation ‘locating’ all the elements. We cap-
ture this constraint as a type class.

class Bifunctor s where
bimap :: (a - ¢) - (b —d) — (sab—scd)

Technically speaking, bimap should satisfy some properties:

bimap id id =id
bimap f g cbimap h j = bimap (f ch) (g oj)

These properties cannot be expressed formally in most languages today, as we
noted in Section 25, but we might expect to be able to express them in the
languages of tomorrow [I8IT5], and they are important for reasoning about
programs using bimap.

All sum-of-product datatypes — that is, consisting of a number of variants,
each with a number of arguments — induce bifunctors. Here are instances for
our three example shapes.

instance Bifunctor ListF where

bimap f g NilF = NilF

bimap f g (ConsF x y) = ConsF (f x) (gy)
instance Bifunctor TreeF where

bimap f g EmptyF = EmptyF

bimap f g (NodeF xy z) = NodeF (f x) (gy) (g2)
instance Bifunctor BtreeF where

bimap f g (TipF x) = TipF (f x)

bimap f g (BinFyz)=BinF (gy) (g2)

Datatype-Generic Programming 25

The operator bimap is datatype-generic, since it is parametrized by the shape s
of the data:

bimap :: Bifunctors = (a - ¢) - (b —-d) — (sab —scd)

However, because bimap is encoded as a member function of a type class, the
definitions for particular shapes are examples of ad-hoc rather than parametric
datatype genericity; each instance entails a proof obligation that the appro-
priate laws are satisfied. It is a bit tedious to have to provide a new instance
of Bifunctor for each new datatype shape; one would of course prefer a sin-
gle datatype-generic definition. This is the kind of feature for which Generic
Haskell [60] is designed, and one can almost achieve the same effect in Haskell
[T7I58126]. One might hope that these instance definitions would in fact be in-
ferred, in the languages of tomorrow [07J62]. But whatever the implementation
mechanism, the result will still be ad-hoc datatype-generic: it is necessarily the
case that different code is used to locate the elements within data of different
shapes.

3.8 Datatype-Generic Recursion Patterns

It turns out that the class Bifunctor provides sufficient flexibility to capture a
wide variety of recursion patterns as datatype-generic programs. The datatype-
specific recursion patterns introduced above can all be made generic in a bifunc-
torial shape s; a little bit of ad-hockery goes a long way. (These definitions are
very similar to those in the PolyP approach [68], discussed in more detail in [61],
§4.2] in this volume.)

map :: Bifunctor s = (a — b) — (Fix sa — Fix s b)

map f = In o bimap f (map f) - out

fold :: Bifunctor s = (sab —b) - Fixsa—b

fold f = f o bimap id (fold f) o out

unfold :: Bifunctor s = (b —sab) - b — Fixsa

unfold f = In o bimap id (unfold f) o f

hylo :: Bifunctors = (b - sab)—(sac—c)—b—c
hylof g =g obimap id (hylof g) of

build :: Bifunctor s = (Vb. (sab —b) —b) — Fixsa
build f =f In

The datatype-generic definitions are surprisingly short — shorter even than the
datatype-specific ones. The structure becomes much clearer with the higher level
of abstraction. In particular, the promised duality between fold and unfold is
readily apparent. (But note that these datatype-generic definitions are applicable
only to instantiations of Fix, as in Section [3.6] and not to the datatypes of the
same name in Section 1)

26 J. Gibbons

4 The Origami Patterns

Design patterns, as the subtitle of the seminal book [35] has it, are ‘elements
of reusable object-oriented software’. However, within the confines of existing
mainstream programming languages, these supposedly reusable elements can
only be expressed extra-linguistically: as prose, pictures, and prototypes. We
believe that this is not inherent in the patterns themselves, but evidence of a
lack of expressivity in those mainstream programming languages. Specifically,
we argue that what those languages lack are higher-order and datatype-generic
features; given such features, the code parts of some design patterns at least are
expressible as directly reusable library components. The benefits of expressing
patterns in this way are considerable: patterns may then be reasoned about,
type-checked, applied and reused, just as any other abstraction can.

We argue our case by capturing as higher-order datatype-generic programs a
small subset ORIGAMI of the Gang of Four (GOF) patterns. (Within these notes,
for simplicity, we equate GOF patterns with design patterns; we use SMALL CAP-
ITALS for the names of patterns.) These programs are parametrized along three
dimensions: by the shape of the computation, which is determined by the shape
of the underlying data, and represented by a type constructor (an operation on
types); by the element type (a type); and by the body of the computation, which
is a higher-order argument (a value, typically a function).

Although our presentation is in a functional programming style, we do not
intend to argue that functional programming is the paradigm of the future (what-
ever we might feel personally!). Rather, we believe that functional programming
languages are a suitable test-bed for experimental language features — as evi-
denced by parametric polymorphism and list comprehensions, for example, which
are both now finding their way into mainstream programming languages such
as Java and C#. We expect that the evolution of programming languages will
continue to follow the same trend: experimental language features will be devel-
oped and explored in small, nimble laboratory languages, and the successful ex-
periments will eventually make their way into the outside world. Specifically, we
expect that the mainstream languages of tomorrow will be broadly similar to the
mainstream languages of today — strongly and statically typed, object-oriented,
with an underlying imperative approach — but incorporating additional features
from the functional world — specifically, higher-order operators and datatype
genericity.

4.1 The Origami Family of Patterns

In this section we describe ORIGAMI, a little suite of patterns for recursive data
structures, consisting of four of the Gang of Four design patterns [35]:

COMPOSITE, for modelling recursive structures;

ITERATOR, for linear access to the elements of a composite;
VISITOR, for structured traversal of a composite;

BUILDER, to generate a composite structure.

Datatype-Generic Programming 27

Component
0..*
+operation():void children
+add(g:Component):void
+remove(g:Component):void
+getChild(i:int):Component
Composite

Leaf

+operation():void void operation() {
+add(g:Component):void foreach g in children {
+remove(g:Component):void | — = T] g.operation();

+getChild(i:int):Component

+operation():void

Fig. 2. The class structure of the COMPOSITE pattern

These four patterns belong together. They all revolve around the notion of
a hierarchical structure, represented as a COMPOSITE. One way of constructing
such hierarchies is captured by the BUILDER pattern: a client application knows
what kinds of part to add and in what order, but it delegates to a separate object
knowledge of their implementation and responsibility for creating and holding
them. Having constructed a hierarchy, there are two kinds of traversal we might
perform over it: either considering it as a container of elements, in which case we
use an ITERATOR for a linear traversal; or considering its shape as significant,
in which case we use a VISITOR for a structured traversal.

Composite. The COMPOSITE pattern ‘lets clients treat individual objects and
compositions of objects uniformly’, by ‘composing objects into tree structures’.
The essence of the pattern is a common supertype (Component), of which both
atomic (Leaf) and aggregate (Composite) objects are subtypes, as shown in
Figure

Iterator. The ITERATOR pattern ‘provides a way to access the elements of an
aggregate object sequentially without exposing its underlying representation’.
It does this by separating the responsibilities of containment (Aggregate) and
iteration (lterator). The standard implementation is as an external or client-
driven iterator, illustrated in Figure [l and as embodied for example in the Java
standard library.

In addition to the standard implementation, GOF also discuss internal or
iterator-driven ITERATORS, illustrated in Figure @ These might be modelled by
the following pair of Java interfaces:

public interface Action{ Object apply (Object 0); }
public interface Iterator { void iterate (Action a); }

28 J. Gibbons

Aggregate Iterator
+createlterator():Iterator +first():void
+next():void

+isDone():boolean
+current():ltem

‘f

ConcreteAggregate <<instantiate>> Concretelterator

+createlterator():Iterator

return new Concretelterator(this); H

Fig. 3. The class structure of the EXTERNAL ITERATOR pattern

Aggregate Iterator Action
-———>
+createlterator():Iterator +iterate(Action):void +apply(Object):Object
ConcreteAggregate <<create>> Concretelterator ConcreteAction
1
+createlterator():lterator +apply(Object):Object

Fig. 4. The class structure of the INTERNAL ITERATOR pattern

An object implementing the Action interface provides a single method apply,
which takes in a collection element and returns (either a new, or the same but
modified) element. The C++ STL calls such objects ‘functors’, but we avoid that
term here to prevent a name clash with type functors. A collection (implements
a FACTORY METHOD [35] to return a separate subobject that) implements the
Iterator interface to accept an Action, apply it to each element in turn, and
replace the original elements with the possibly new ones returned. Internal IT-
ERATORs are less flexible than external — for example, it is more difficult to
have two linked iterations over the same collection, and to terminate an itera-
tion early — but they are correspondingly simpler to use.

Visitor. In the normal object-oriented paradigm, the definition of each traver-
sal operation is spread across the whole class hierarchy of the structure being
traversed — typically but not necessarily a COMPOSITE. This makes it easy to

Datatype-Generic Programming 29

Element

o
+accept(v:Visitor):void

ObjectStructure

ElementB

ElementA
bs

I +accept(v:Visitor):void +accept(v:Visitor):void
| +operationA():void : +operationB():void

void accept (Visitor v) {
v.visitElementBi(this);

void accept (Visitor v) {

v.visitElementA(this);
foreach b in bs
b.accept(v);

Fig. 5. The class structure of the elements in the INTERNAL VISITOR pattern

Visitor

+visitElementA(e:ElementA):void
+visitElementB(e:ElementB):void

Visitor2

Visitor1

+visitElementA(e:ElementA):void +visitElementA(e:ElementA):void
+visitElementB(e:ElementB):void +visitElementB(e:ElementB):void

Fig. 6. The class structure of the visitors in the INTERNAL VISITOR pattern

Element

>
+accept(v: Visitor):void

ObjectStructure

ElementB

ElementA
bs

+accept(v:Visitor):void
+operationB():void

I +accept(v:Visitor):void
| +operationA():void

void accept (Visitor v) {
v.visitElementB(this);
}

void accept (Visitor v) {
v.visitElementA(this);

Fig. 7. The class structure of the elements in the EXTERNAL VISITOR pattern

30 J. Gibbons

add new variants of the datatype (for example, new kinds of leaf node in the
COMPOSITE), but hard to add new traversal operations.

The VISITOR pattern ‘represents an operation to be performed on the elements
of an object structure’, allowing one to ‘define a new operation without changing
the classes of the elements on which it operates’. This is achieved by providing
a hook for associating new traversals (the method accept in Figure [l), and an
interface for those traversals to implement (the interface Visitor in Figure[d); the
effect is to simulate double dispatch on the types of two arguments, the element
type and the operation, by two consecutive single dispatches.

Visitor

+visitElementA(e:ElementA):void
+visitElementB(e:ElementB):void

T

Visitor1 Visitor2
+visitElementA(e:ElementA):void +visitElementA(e:ElementA):void
+visitElementB(e:ElementB):void +visitElementB(e:ElementB):void

| |
| |
void visitElementA(ElementA a) { void visitElementA(ElementA a) {
a.operationA(); foreach b in a.bs { b.accept(v); }
foreach b in a.bs { b.accept(v); } a.operationA();
} }
void visitElementB(ElementB b) { void visitElementB(ElementB b) {
b.operationB(); b.operationB();

Fig. 8. The class structure of the visitors in the EXTERNAL VISITOR pattern

The pattern provides a kind of aspect-oriented programming [82], modularizing
what would otherwise be a cross-cutting concern, namely the definition of a
traversal. It reverses the costs: it is now easy to add new traversals, but hard to
add new variants. (Wadler [137] has coined the term expression problem for this
tension between dimensions of easy extension.)

As with the distinction between internal and external iterators, there is a
choice about where to put responsibility for managing a traversal. Buchlovsky
and Thielecke [15] use the term ‘INTERNAL VISITOR’ for the usual presentation,
with the accept methods of Element subclasses making recursive calls as shown
in Figure Bl Moving that responsibility from the accept methods of the Element
classes to the visit methods of the Visitor classes, as shown in Figures [and [§]
yields what they call an EXTERNAL VISITOR. Now the traversal algorithm is
not fixed, and different visitors may vary it (for example, between preorder and
postorder). One might say that this latter variation encapsulates simple case
analysis or pattern matching, rather than traversals per se.

Datatype-Generic Programming 31

Builder. Finally, the BUILDER pattern ‘separates the construction of a com-
plex object from its representation, so that the same construction process can
create different representations’. As Figure [0 shows, this is done by delegating
responsibility for the construction to a separate Builder object — in fact, an
instance of the STRATEGY pattern [35], encapsulating a strategy for performing
the construction.

Director Builder

+addPart():void

Product ConcreteBuilder

+addPart():void
+getProduct():Product

Fig. 9. The class structure of the BUILDER pattern

The GOF motivating example of the BUILDER pattern involves assembling a
product that is basically a simple collection; that is necessarily the case, because
the operations supported by a builder object take just a part and return no
result. However, they also suggest the possibility of building a more structured
product, in which the parts are linked together. For example, to construct a tree,
each operation to add a part could return a unique identifier for the part added,
and take an optional identifier for the parent to which to add it; a directed acyclic
graph requires a set of parents for each node, and construction in topological
order; a cyclic graph requires the possibility of ‘forward references’, adding parts
as children of yet-to-be-added parents.

GOF also suggest the possibility of COMPUTING BUILDERs. Instead of con-
structing a large Product and eventually collapsing it, one can provide a separate
implementation of the Builder interface that makes the Product itself the col-
lapsed result, computing it on the fly while building.

4.2 An Application of Origami

As an example of applying the ORIGAMI patterns, consider the little document
system illustrated in Figure (The code for this example is presented as an
appendix in Section [1)

e The focus of the application is the COMPOSITE structure of documents:
Sections have a title and a collection of sub-Components, and Paragraphs
have a body.

32

J. Gibbons

+visit(Section):void
+visit(Paragraph):void

PrintVisitor

+getResult():String[]

Component

Builder

+addSection(int):int
+addParagraph(int):int

ComponentBuilder

PrintBuilder

+addSection(int):int
+addParagraph(int):int
+getProduct():Component

+addSection(int):int
+addParagraph(int):int
+getProduct():String[]

+accept(v:Visitor):void
+getlterator():Iterator

Section

Paragraph

+title:String

+body:String

+accept(v:Visitor):void
+getlterator():lterator
+add(Component):void

+accept(v:Visitor):void
+getlterator():Iterator

<<create>>

Iterator

+iterate (action):void

7

Action

+apply(Paragraph):void

SpellCorrector

+apply(Paragraph):void

Paragraphlterator

+iterate(Action):void

Sectionlterator

+iterate(Action):void

Fig. 10. An application of the ORIGAMI patterns

e One can iterate over such a structure using an INTERNAL ITERATOR, which
acts on every Paragraph. For instance, iterating with a SpellCorrector might
correct the spelling of every paragraph body. (For brevity, we have omitted
the possibility of acting on the Section titles of a document, but it would
be easy to extend the Action interface to allow this. We have also made the
apply method return void, so providing no way to change the identity of
the document elements; more generally, apply could optionally return new

elements, as described under the ITERATOR pattern above.)

e One can also traverse the document structure with a VISITOR, for example
to compute some summary of the document. For instance, a PrintVisitor
might yield a string array with the section titles and paragraph bodies in

order.

Datatype-Generic Programming 33

e Finally, one can construct such a document using a BUILDER. We have used
the structured variant of the pattern, adding Sections and Paragraphs as chil-
dren of existing Components via unique int identifiers (only non-negative
ints are returned as identifiers, so a parentless node can be indicated by
passing a negative int). A ComponentBuilder constructs a Component as
expected, whereas a PrintBuilder is a COMPUTING BUILDER, incorporat-
ing the printing behaviour of the PrintVisitor incrementally and actually
constructing a string array instead.

This one application is a paradigmatic example of each of the four ORIGAMI
patterns. We therefore claim that any alternative representation of the patterns
cleanly capturing this structure is a faithful rendition of those patterns. In Sec-
tion3l below, we provide just such a representation, in terms of the higher-order
datatype-generic programs from Section Section 4] justifies our claim of a
faithful rendition by capturing the structure of the document application in this
alternative representation.

4.3 Patterns as HODGPs

We now revisit the ORIGAMI patterns, showing that each of the four patterns
can be captured using higher-order datatype-generic program (HODGP) con-
structs. However, we consider them in a slightly different order; it turns out that
the datatype-generic representation of the ITERATOR pattern builds on that of
VISITOR.

Composite in HODGP. COMPOSITEs are just recursive data structures. So
actually, these correspond not to programs, but to types. Recursive data struc-
tures come essentially for free in functional programming languages.

dataFix sa =In{out::sa (Fixsa)}

What is datatype-generic about this definition is that it is parametrized by the
shape s of the data structure; thus, one recursive datatype serves to capture all
(technically regular, that is, first-order fixed points of type functors admitting a
map operation) recursive data structures, whatever their shape.

Visitor in HODGP. The VISITOR pattern collects fragments of each traversal
into one place, and provides a hook for performing such traversals. The resulting
style matches the normal functional-programming paradigm, in which traversals
are entirely separate from the data structures traversed. No explicit hook is
needed; the connection between traversal and data is made within the traversal
by dispatching on the data, either by pattern matching or (equivalently) by
applying a destructor. What was a double dispatch in the OO setting becomes
in HODGP the choice of a function to apply, followed by a case analysis on the
variant of the data structure. A common case of such traversals, albeit not the
most general, is the fold operator introduced above.

34 J. Gibbons

fold :Bifunctors = (sab —b) - Fixsa—b
fold f = f o bimap id (fold) o out

This too is datatype-generic, parametrized by the shape s: the same function fold
suffices to traverse any shape of COMPOSITE structure.

Iterator in HODGP. EXTERNAL ITERATORs give sequential access to the
elements of a collection. The functional approach would be to provide a view of
the collection as a list of elements, at least for read-only access. Seen this way, the
ITERATOR pattern can be implemented using the VISITOR pattern, traversing
using a body combiner that combines the element lists from substructures into
one overall element list.

elements :: Bifunctor s = (s a (List a) — Lista) — Fix sa — List a
elements combiner = fold combiner

With lazy evaluation, the list of elements can be generated incrementally on
demand, rather than eagerly in advance: ‘lazy evaluation means that lists and
iterators over lists are identified’ [136].

In the formulation above, the combiner argument has to be provided to the
elements operation. Passing different combiners allows the same COMPOSITE
to yield its elements in different orders; for example, a tree-shaped container
could support both preorder and postorder traversal. On the other hand, it
is clumsy always to have to specify the combiner. One could specify it once
and for all, in the class Bifunctor, in effect making it another datatype-generic
operation parametrized by the shape s. In the languages of tomorrow, one might
expect that at least one, obvious implementation of combiner could be inferred
automatically.

Of course, some aspects of external ITERATORs can already be expressed lin-
guistically; the interface java.util .Iterator has been available for years in the Java
API, the iterator concept has been explicit in the C++ Standard Template Li-
brary for even longer, and recent versions of Java and C# even provide language
support (‘foreach’) for iterating over the elements yielded by such an operator.
Thus, element consumers can already be written datatype-generically today. But
still, one has to implement the Iterator anew for each datatype defined; element
producers are still datatype-specific.

An INTERNAL ITERATOR is basically a map operation, iterating over a collec-
tion and yielding one of the same shape but with different or modified elements;
it therefore supports write access to the collection as well as read access. In
HODGP, we can give a single generic definition of this.

map :: Bifunctor s = (a — b) — (Fix sa — Fix s b)
map f = In o bimap f (map f) o out

This is in contrast with the object-oriented approach, in which internal Iterator
implementations are ad-hoc datatype-generic. Note also that the HODGP ver-
sion is more general than the OO version, because it can safely return a collection
of elements of a different type.

Datatype-Generic Programming 35

On the other hand, the object-oriented ITERATOR can have side-effects, which
the purely functional map cannot; for example, it can perform I/0, accumulate
a measure of the collection, and so on. However, it is possible to generalize the
map operation considerably, capturing all those effects in a datatype-generic
way. This is the subject of Section [

Builder in HODGP. The standard protocol for the BUILDER pattern involves
a Director sending Parts one by one to a Builder for it to assemble, and then
retrieving from the Builder a Product. Thus, the product is assembled in a
step-by-step fashion, but is unavailable until assembly is complete. With lazy
evaluation, we can in some circumstances construct the Product incrementally:
we can yield access to the root of the product structure while continuing to
assemble its substructures. In the case that the data structure is assembled in a
regular fashion, this corresponds in the HODGP style to an unfold operation.

unfold ::Bifunctors = (b - sab) —b — Fixsa
unfold f = In o bimap id (unfold f) o f

When the data structure is assembled irregularly, a build operator has to be
used instead.

build :: Bifunctor s = (¥b. (sab —b) —b) — Fixsa
build f =f In

These are both datatype-generic programs, parametrized by the shape of product
to be built. In contrast, the GOF BUILDER pattern states the general scheme,
but requires code specific for each Builder interface and each ConcreteBuilder
implementation.

Turning to GOF’s computing builders, with lazy evaluation there is not so
pressing a need to fuse building with postprocessing. If the structure of the
consumer computation matches that of the producer — in particular, if the
consumer is a fold and the producer a build or an unfold — then consumption
can be interleaved with production, and the whole product never need be in
existence at once.

Nevertheless, naive interleaving of production and consumption of parts of
the product still involves the creation and immediate disposal of those parts.
Even the individual parts need never be constructed; often, they can be defor-
ested [133], with the attributes of a part being fed straight into the consumption
process. When the producer is an unfold, the composition of producer and con-
sumer is (under certain mild strictness conditions) a hylomorphism.

hylo ::Bifunctor s = (b —-sab)— (sac—c)—b—c
hylof g =g obimapid (hylof g)of

More generally, but harder to reason with, the producer is a build, and the
composition replaces the constructors in the builder by the body of the fold.

36 J. Gibbons

foldBuild :: Bifunctor s = (vb. (sab —b)—b)— (sac—c)—c
foldBuild f g =f g

(that is, foldBuild f g = fold g (build f).) Once again, both of these definitions
are datatype-generic; both take as arguments a producer f and a consumer g,
both with types parametrized by the shape S of the product to be built. Note
especially that in both cases, the fusion requires no creativity; in contrast, GOF’s
computing builders can take considerable insight and ingenuity to program —
see the code for PrintBuilder in Section [[.14]

4.4 The Example, Revisited

To justify our claim that the higher-order datatype-generic representation of the
ORIGAMI patterns is a faithful rendition, we use it to re-express the document
application discussed in Section and illustrated in Figure It is instruc-
tive to compare these 40 lines of Haskell code with the equivalent Java code in
Section [7

e The COMPOSITE structure has the following shape.

data DocF a b = Para a | Sec String [b]
type Doc = Fix DocF String

instance Bifunctor DocF where
bimap f g (Paras) = Para (f s)
bimap f g (Sec s xs) = Sec s (map g xs)

We have chosen to consider paragraph bodies as the ‘contents’ of the data
structure, but section titles as part of the ‘shape’; then mapping over the
contents will affect the paragraph bodies but not the section titles. That
decision could easily be varied.

e We used an INTERNAL ITERATOR to implement the SpellCorrector; this
would be modelled now as an instance of map.

correct :: String — String -- definition omitted

corrector :: Doc — Doc
corrector = map correct

e The use of VISITOR to print the contents of a document is a paradigmatic
instance of a fold.

printDoc :: Doc — [String]

printDoc = fold combine

combine :: DocF String [String] — [String]
combine (Paras) =[s]

combine (Sec s xs) = s : concat xs

Datatype-Generic Programming 37

Finally, in place of the BUILDER pattern, we can use unfold for constructing
documents, at least when doing so in a structured fashion. For example,
consider the following simple representation of XML trees.

data XML = Text String | Entity Tag Attrs [XML]
type Tag = String
type Attrs = [(String, String)]

From such an XML tree we can construct a document.

fromXML :: XML — Doc
fromXML = unfold element

Text elements are represented as paragraphs, and Entitys as sections having
appropriate titles.

element :: XML — DocF String XML
element (Text s) = Paras
element (Entity t kvs xs) = Sec (title t kvs) xs

title :: Tag — Attrs — String

titlet[] =t

title t kvs =t 4 paren (join (map attr kvs)) where
parens —n (u_H_S_H_n)n
join [s] =5

join (s:ss) =s 4", "+ joinss
attr (k,V) =K H"=""H v H"on

Printing of a document constructed from an XML file is the composition of
a fold with an unfold.

printXML :: XML — [String]
printXML = printDoc o fromXML

It is therefore also a hylomorphism:
printXML = hylo element combine

For constructing documents in a less structured fashion, we have to resort
to the more general and more complicated build operator. For example, here
is a builder for a simple document of one section with two sub-paragraphs.

docBuilder :: (DocF Stringb — b) — b
docBuilder f = f (Sec "Heading" [f (Para "p1"),f (Para "p2")])

We can actually construct the document from this builder, simply by passing
it to the operator build, which plugs the holes with document constructors.

myDoc :: Doc
myDoc = build docBuilder

38 J. Gibbons

If we want to traverse the resulting document, for example to print it, we can
do so directly without having to construct the document in the first place;
we do so by plugging the holes instead with the body of the printDoc fold.

printMyDoc :: [String]
printMyDoc = docBuilder combine

5 The Essence of the Iterator Pattern

In Section @, we argued that the ITERATOR pattern amounts to nothing more
than the higher-order datatype-generic map operation. However, as we men-
tioned, there are aspects of an ITERATOR that are not adequately explained by
a map; in particular, the possibility of effects such as I/O, and dependencies
between the actions executed at each element.

For example, consider the code below, showing a C# method loop that iterates
over a collection, counting the elements and simultaneously interacting with each
of them.

public static int loop (MyObj) (IEnumerable (MyObj) coll){
intn =0;
foreach (MyObj obj in coll){
n=n-+1;
obj .touch ();
}

return n;

}

The method is parametrized by the type MyObj of collection elements; this pa-
rameter is used twice: to constrain the collection coll passed as a parameter, and
as a type for the local variable obj. The collection itself is rather unconstrained;
it only has to implement the IEnumerable (MyObj) interface.

In this section, we investigate the structure of such iterations. We emphasize
that we want to capture both aspects of the method loop and iterations like
it: mapping over the elements, and simultaneously accumulating some measure
of those elements. This takes us beyond the more simplistic map model from
Section @l We still aim to construct a holistic model, treating the iteration as
an abstraction in its own right; this leads us naturally to a higher-order presen-
tation. We also want to develop an algebra of such iterations, with combinators
for composing them and laws for reasoning about them; this strengthens the
case for a declarative approach. We argue that McBride and Paterson’s recently
introduced notion of idioms [05], and in particular the corresponding traverse
operator, have exactly the right properties. (The material in this section is based
on [44]; the reader is warned that this work, and especially the results in Sec-
tion (.7, is more advanced and less mature than in the earlier parts of these
notes.)

Datatype-Generic Programming 39

5.1 Functional Iteration

In this section, we review a number of simpler approaches to capturing the
essence of iteration. In particular, we look at a variety of datatype-generic recur-
sion operators: maps, folds, unfolds, crushes, and monadic maps. The traversals
we discuss in Section generalize all of these.

Origami. We have already considered the origami style of programming [37I38],
in which the structure of programs is captured by higher-order datatype-generic
recursion operators such as map, fold and unfold. And we have already observed
that the recursion pattern map captures iterations that modify each element of
a collection independently; thus, map touch captures the mapping aspect of the
C# loop above, but not the accumulating aspect.

At first glance, it might seem that the datatype-generic fold captures the ac-
cumulating aspect; but the analogy is rather less clear for a non-linear collection.
In contrast to the C# program above, which is sufficiently generic to apply to
non-linear collections, a datatype-generic counting operation defined using fold
would need a datatype-generic numeric algebra as the fold body. Such a thing
could be defined polytypically [68/60], but the fact remains that fold in isolation
does not encapsulate the datatype genericity.

Essential to iteration in the sense we are using the term is linear access
to collection elements; this was the problem with fold. One might consider a
datatype-generic operation to yield a linear sequence of collection elements from
possibly non-linear structures, for example by folding with a content combiner,
or unfolding to a list. This could be done (though as with the fold problem, it
requires a datatype-generic sequence algebra or coalgebra as the body of the fold
or unfold); but even then, this would address only the accumulating aspect of
the C# iteration, and not the mapping aspect — it loses the shape of the orig-
inal structure. Moreover, although the sequence of elements is always definable
as an instance of fold, it is not always definable as an instance of unfold [46].

We might also explore the possibility of combining some of these approaches.
For example, it is clear from the definitions above that map is an instance of
fold. Moreover, the banana split theorem [31] states that two folds in parallel on
the same data structure can be fused into one. Therefore, a map and a fold in
parallel fuse to a single fold, yielding both a new collection and an accumulated
measure, and might therefore be considered to capture both aspects of the C#
iteration. However, we feel that this is an unsatisfactory solution: it may indeed
simulate or implement the same behaviour, but it is no longer manifest that the
shape of the resulting collection is related to that of the original.

Crush. Meertens [99] generalized APL’s ‘reduce’ [67] to a crush operation,
(@) ::ta — a for binary operator (¢)::a — a — a with a unit, polytypi-
cally over the structure of a regular functor t. For example, (+)) polytypically
sums a collection of numbers. For projections, composition, sum and fixpoint,
there is an obvious thing to do, so the only ingredients that need to be provided
are the binary operator (for products) and a constant (for units). Crush cap-

40 J. Gibbons

tures the accumulating aspect of the C# iteration above, accumulating elements
independently of the shape of the data structure, but not the mapping aspect.

Monadic Map. Haskell’s standard library [I12] defines a monadic map for
lists, which lifts the standard map on lists (taking a function on elements to a
function on lists) to the Kleisli category (taking a monadic function on elements
to a monadic function on lists):

mapM :: Monad m = (a — mb) — ([a] — m [b])

(For notational brevity, we resort throughout Section [l to the built-in type [a]
of lists rather than the datatype-generic type List a.) Fokkinga [30] showed how
to generalize this from lists to an arbitrary regular functor, datatype-generically.
Several authors [T02IT06JTOJTT0IR4] have observed that monadic map is a promis-
ing model of iteration. Monadic maps are very close to the idiomatic traversals
that we propose as the essence of imperative iterations; indeed, for certain id-
ioms — specifically, those that arise from monads — traversal reduces exactly
to monadic map. However, we argue that monadic maps do not capture accu-
mulating iterations as nicely as they might. Moreover, it is well-known [7783]
that monads do not compose in general, whereas it turns out that idioms do;
this gives us a richer algebra of traversals. Finally, monadic maps stumble over
products, for which there are two reasonable but symmetric definitions, coincid-
ing when the monad is commutative. This stumbling block forces either a bias to
left or right, or a restricted focus on commutative monads, or an additional com-
plicating parametrization; in contrast, idioms generally have no such problem,
and in fact turn it into a virtue.

Closely related to monadic maps are operations like Haskell’s sequence func-
tion:

sequence :: Monad m = [m a] — m [a]

and its datatype-generic generalization to arbitrary datatypes. Indeed, sequence
and mapM are interdefinable:

mapM f = sequence o map f
and so
sequence = mapM id

Most writers on monadic maps have investigated such an operation; Moggi et al.
[106] call it passive traversal, Meertens [I00] calls it functor pulling, and Pardo
[I10] and others have called it a distributive law. It is related to Hoogendijk
and Backhouse’s commuting relators [65], but with the addition of the monadic
structure on one of the functors. McBride and Paterson introduce the function
dist playing the same role, but as we shall see, more generally.

Datatype-Generic Programming 41

5.2 Idioms

McBride and Paterson [95] recently introduced the notion of an idiom or ap-
plicative functor as a generalization of monads. (‘Idiom’ was the name McBride
originally chose, but he and Paterson now favour the less evocative term ‘ap-
plicative functor’. We prefer the original term, not least because it lends itself
nicely to adjectival uses, as in ‘idiomatic traversal’.) Monads [I05/135] allow
the expression of effectful computations within a purely functional language,
but they do so by encouraging an imperative [I14] programming style; in fact,
Haskell’s monadic do notation is explicitly designed to give an imperative feel.
Since idioms generalize monads, they provide the same access to effectful com-
putations; but they encourage a more applicative programming style, and so fit
better within the functional programming milieu. Moreover, as we shall see, id-
ioms strictly generalize monads; they provide features beyond those of monads.
This will be important to us in capturing a wider variety of iterations, and in
providing a richer algebra of those iterations.

Idioms are captured in Haskell by the following type class. (In contrast to
McBride and Paterson, we insist that every ldiom is also a Functor. This en-
tails no loss of generality, since the laws below ensure that defining fmap f x =
pure f ® x suffices.)

class Functor m = Idiom m where
pure ::a —ma
(®) =m(@a—-bh)—(ma—-mb)

Informally, pure lifts ordinary values into the idiomatic world, and ® provides
an idiomatic flavour of function application. We make the convention that ®
associates to the left, just like ordinary function application.

In addition to those inherited from the Functor class, idioms are expected to
satisfy the following laws.

pure id ®u =u

pure (o) BUBV AW =U® (VB W)

pure f ® pure X = pure (f x)

u ® pure x =pure (M —f x)®u

(recall that (o) denotes function composition). These two collections of laws are
together sufficient to allow any expression built from the idiom operators to be
rewritten into a canonical form, consisting of a pure function applied to a series
of idiomatic arguments:

puref ®u; ® ... ® Uy,

(In case the reader feels the need for some intuition for these laws, we refer them
forwards to the stream Naperian idiom discussed below.)

42 J. Gibbons

Monadic Idioms. Idioms generalize monads; every monad induces an idiom,
with the following operations. (Taken literally as a Haskell declaration, this code
provokes complaints about overlapping instances; it is therefore perhaps better
to take it as a statement of intent instead.)

instance Monad m = Idiom m where
purea =do{returna}
mf @ mx = do {f «— mf;x < mx;return (f x)}

The pure operator for a monadic idiom is just the return of the monad; idiomatic
application ® is monadic application, here with the effects of the function preced-
ing those of the argument. There is another, completely symmetric, definition,
with the effects of the argument before those of the function. We leave it to the
reader to verify that the monad laws entail the idiom laws (with either definition
of monadic application).

Naperian Idioms. One of McBride and Paterson’s motivating examples of an
idiom arises from the environment monad:

newtype Envea =Env{unEnv:e —a}

The pure and ® of this type turn out to be the K and S combinators,
respectively.

instance Idiom (Env e) where
pure a =Env (e — a)
Env ef ® Envex = Env (Ae — (ef e) (ex e))

One can think of instances of Env e as datatypes with fixed shape, which gives rise
to an interesting subclass of monadic idioms. For example, the functor Stream
is equivalent to Env Nat; under the equivalence, the K and S combinators turn
out to be the familiar ‘repeat’ and ‘zip with apply’ operators.

data Stream a = ConsS a (Stream a)

instance Idiom Stream where
purea = repeatS a
mf ® mx = zipApS mf mx
repeatS ::a — Stream a
repeatS x = xs where xs = ConsS x xs

ZipApS :: (a — b — ¢) — Stream a — Stream b — Stream ¢
ZipApS (ConsS f fs) (ConsS x xs) = ConsS (f x) (zipApS fs xs)

The pure operator lifts a value to a stream, replicating it for each element;
idiomatic application is pointwise, taking a stream of functions and a stream of
arguments to a stream of results. We find that this idiom is the most accessible
one for understanding the idiom laws.

Datatype-Generic Programming 43

A similar construction works for any fixed-shape datatype: pairs, vectors of
length n, two-dimensional matrices of a given size, infinite binary trees, and so
on. Peter Hancock [94] calls such a datatype Naperian, because the environment
or position type acts as a notion of logarithm. That is, datatype t is Naperian if
ta ~aP ~ p — a for some type p of positions, called the logarithm log t of t.
Then t 1 ~ 17 ~ 1, so the shape is fixed, and familiar properties of logarithms
arise — for example, log (t ou) ~ log t x log u.

class Functor t = Naperiantp | p —t, t — p where

fill:(p—a)—ta - index o fill =id
index :ta — (p —a) -- fill oindex = id
indices ::t p

indices = fill id
fill f = fmap f indices

(Here, p — t,t — p are functional dependencies, indicating that each of the two
parameters of the type class Naperian determines the other.) We leave as an
exercise for the reader to show that the definitions

purea =fill (A\p — a)
mf ® mx = fill (Ap — (index mf p) (index mx p))

satisfy the idiom laws.

Naperian idioms impose a fixed and hence statically known shape on data. We
therefore expect some connection with data-parallel and numerically intensive
computation, in the style of Jay’s language FISh [71] and its shapely operations
[72], which separate statically analysable shape from dynamically determined
contents. Computations within Naperian idioms tend to perform a transposition
of results; there appears also to be some connection with what Kiithne [86] calls
the transfold operator.

The ‘bind’ operation of a monad allows the result of one computation to affect
the choice and ordering of effects of subsequent operations. Idioms in general
provide no such possibility; indeed, as we have seen, every expression built just
from the idiom combinators is equivalent to a pure function applied to a series
of idiomatic arguments, and so the sequencing of any effects is fixed. Focusing
on the idiomatic view of a Naperian datatype, rather than the monadic view in
terms of an environment, enforces that restriction. The interesting thing is that
many useful computations involving monads do not require the full flexibility of
dynamically chosen ordering of effects; for these, the idiomatic interface suffices.

Monoidal Idioms. Idioms strictly generalize monads; there are idioms that do
not arise from monads. A third family of idioms, this time non-monadic, arises
from constant functors with monoidal targets. McBride and Paterson call these
phantom idioms, because the resulting type is a phantom type (as opposed to
a container type of some kind). Any monoid (@, &) induces an idiom, where the
pure operator yields the unit of the monoid and application uses the binary
operator.

44 J. Gibbons

newtype Kba =K{unK ::b}

instance Monoid b = Idiom (K b) where
pure =K
x®y =K (unK x @ unKy)

Computations within this idiom accumulate some measure: for the monoid of
integers with addition, they count or sum; for the monoid of lists with con-
catenation, they collect some trace of values; for the monoid of booleans with
disjunction, they encapsulate linear searches; and so on. Note that sequences
of one kind or another therefore form idioms in three different ways: monadic
with cartesian product, modelling non-determinism; Naperian with zip, mod-
elling data-parallelism; and monoidal with concatenation, modelling tracing.

Combining Idioms. Like monads, idioms are closed under products; so two
independent idiomatic effects can generally be fused into one, their product.

data Prod mna = Prod {pfst::ma,psnd ::na}

fork : (a = mb) - (a—nb)—-a—Prodmnhb

fork f ga =Prod (f a) (g a)

instance (Idiom m, Idiom n) = Idiom (Prod m n) where
pure x = Prod (pure x) (pure X)
mf ® mx = Prod (pfst mf @ pfst mx) (psnd mf ® psnd mx)

Unlike monads in general, idioms are also closed under composition; so two
sequentially dependent idiomatic effects can generally be fused into one, their
composition.

data Comp mna = Comp{unComp::m (na)}

instance (Idiom m, Idiom n) = Idiom (Comp m n) where
pure x = Comp (pure (pure X))
mf @ mx = Comp (pure (®) ® unComp mf ® unComp mx)

We see examples of both of these combinations in Section [5.4]

5.3 Idiomatic Traversal

Two of the three motivating examples McBride and Paterson provide for id-
iomatic computations, sequencing a list of monadic effects and transposing a
matrix, are instances of a general scheme they call traversal. This involves iterat-
ing over the elements of a data structure, in the style of a ‘map’, but interpreting
certain function applications within the idiom.

In the case of lists, traversal may be defined as follows.

traverseL :: Idiomm = (a — mb) — ([a] — m [b])
traverseL f [] = pure []
traverseL f (X : xs) = pure (:) ® f x ® traverseL f xs

Datatype-Generic Programming 45

A special case is for the identity function, when traversal distributes the data
structure over the idiomatic structure:

distL :: ldiom m = [m a] — m [a]
distL = traverseL id

The ‘map within the idiom’ pattern of traversal for lists generalizes to any
(finite) functorial data structure. We capture this via a type class of Traversable
data structures (again, unlike McBride and Paterson, but without loss of gener-
ality, we insist on functoriality):

class Functor t = Traversable t where

traverse :: ldiomm = (a - mb) — (ta—m(th))
dist : ldiomm=t(ma)—>m(ta)

traverse f = dist o fmap f

dist = traverse id

As intended, this class generalizes traverseL.:
instance Traversable [] where traverse = traverseL

Although traverse and dist are interdefinable (intuitively, dist is to traverse as
monadic join g is to bind >=), so only one needs to be given, defining traverse
and inheriting dist is usually simpler and more efficient than vice versa.

data Btree a = Tip a | Bin (Btree a) (Btree a)
instance Traversable Btree where
traverse f (Tipa) =pure Tip®fa
traverse f (Bin t u) = pure Bin ® traverse f t ® traverse f u

McBride and Paterson propose a special syntax involving ‘idiomatic brackets’,
which would have the effect of inserting the occurrences of pure and ® implic-
itly; apart from these brackets, the definition of traverse then looks exactly
like a definition of fmap. This definition could be derived automatically [62], or
given polytypically once and for all, assuming some universal representation of
datatypes such as sums and products [60] or regular functors [38]:

class Bifunctor s = Bitraversable s where

bidist :: Idiomm =s (ma) (mb) —m(sab)
instance Bitraversable s = Traversable (Fix s) where

traverse f = fold (fmap In o bidist o bimap f id)
instance Bitraversable BtreeF where

bidist (TipF a) = pure TipF ® a

bidist (BinF t u) = pure BinF @t ®u

When m is specialized to the identity idiom, traversal reduces to the functorial
map over lists.

46 J. Gibbons

newtype Id a = Id{unld :: a}

instance Idiom Id where
purea =1Ida
mf ® mx = Id ((unld mf) (unld mx))

In the case of a monadic idiom, traversal specializes to monadic map, and has
the same uses. In fact, traversal is really just a slight generalization of monadic
map: generalizing in the sense that it applies also to non-monadic idioms. We
consider this an interesting insight, because it reveals that monadic-map-like
traversal in some sense does not require the full power of a monad; in particular,
it does not require the bind or join operators, which are unavailable in idioms
in general.

For a Naperian idiom, traversal transposes results. For example, interpreted
in the pair Naperian idiom, traverseL id unzips a list of pairs into a pair of lists.

For a monoidal idiom, traversal accumulates values. For example, interpreted
in the integer monoidal idiom, traversal accumulates a sum of integer measures
of the elements.

tsum :: Traversable t = (a — Int) — ta — Int
tsum f = unK o traverse (K o f)

5.4 Examples of Traversal: Shape and Contents

As well as being parametrically polymorphic in the collection elements, the
generic traversal introduced above is parametrized along two further dimensions:
it is ad-hoc datatype-generic in the datatype being traversed, and parametrically
datatype-generic in the idiom in which the traversal is interpreted. Specializing
the latter to the lists-as-monoid idiom yields a generic contents operation, which
is in turn the basis for many other generic operations, including non-monoidal
ones such as indexing:

contents :: Traversablet = ta — [a]
contents = unK o traverse (K o single)
single :a — [a]

single X = [X]

This contents operation yields one half of Jay’s decomposition of datatypes
into shape and contents [72]. The other half is obtained simply by a map, which
is to say, a traversal interpreted in the identity idiom:

shape :: Traversablet =ta — t ()
shape = unld o traverse (ld o bang)
bang ::a — ()

bang = const ()

Of course, it is trivial to combine these two traversals to obtain both halves of
the decomposition as a single function, but doing this by tupling in the obvious

Datatype-Generic Programming 47

way entails two traversals over the data structure. Is it possible to fuse the
two traversals into one? The product of idioms allows exactly this, yielding the
decomposition of a data structure into shape and contents in a single pass:

decompose’ :: Traversable t = ta — Prod Id (K [a]) (t ())
decompose’ = traverse (fork (Id o bang) (K o single))

It is then a simple matter of removing the tags for the idiom product and the
idioms themselves:

decompose :: Traversablet = ta — (t (),[a])
decompose = getPair o decompose’
getPair :: Prod Id (K b)a — (a,b)
getPair xy = (unld (pfst xy),unK (psnd xy))

Moggi et al. [106] give a similar decomposition, but using a customized combi-
nation of monads; the above approach is arguably simpler.

A similar benefit can be found in the reassembly of a full data structure
from separate shape and contents. This is a stateful operation, where the state
consists of the contents to be inserted; but it is also a partial operation, because
the number of elements provided may not agree with the number of positions
in the shape. We therefore make use of both the State monad and the Maybe
monad; but this time, we form their composition rather than their product. (As
it happens, the composition of the State and Maybe monads in this way forms
another monad, but that is not the case in general.)

The crux of the traversal is the partial stateful function that strips the first
element off the list of contents, if this list is non-empty:

takeHead :: State [a] (Maybe a)
takeHead = do {xs < get;
case XS of
[] — return Nothing
(y :ys) — do {put ys; return (Justy)}}

This is a composite idiomatic value, using the composition of the two monadic
idioms State [a] and Maybe; traversal in the composite idiom using this operation
returns a stateful function for the whole data structure.

reassemble’ :: Traversable t = t () — State [a] (Maybe (t a))
reassemble’ = unComp o traverse (A\() — Comp takeHead)

Now it is simply a matter of running this stateful function, and checking that
the contents are entirely consumed.

reassemble :: Traversable t = (t (), [a]) — Maybe (t a)
reassemble (x,ys) = allGone (runState (reassemble’ x)ys)
allGone :: (Maybe (t a),[a]) — Maybe (t a)

allGone (mt, []) =mt

allGone (mt, (:)) = Nothing

48 J. Gibbons

5.5 Collection and Dispersal

We have found it convenient to consider special cases of effectful traversals in
which the mapping aspect is independent of the accumulation, and vice versa.

collect :: (Traversable t, ldiom m) =
(@a—m()—(a—b)—-ta—m(th)
collect f g = traverse (A\a — pure (A\() —ga)®f a)

disperse :: (Traversable t, Idiom m) =
mb—(a—b—-c)—ta—m(tc)
disperse mh g = traverse (Aa — pure (g a) ® mb)

The first of these traversals accumulates elements effectfully, but modifies those
elements purely and independently of this accumulation. The C# iteration at
the start of Section [is an example, using the idiom of the State monad to
capture the counting:

loop :: Traversable t = (a — b) — ta — State Int (t b)
loop touch = collect (A\a — do {n « get;put (n + 1)}) touch

The second kind of traversal modifies elements effectfully but dependent on the
state, evolving the state independently of the elements. An example of this is a
kind of converse of counting, labelling every element with its position in order
of traversal.

label :: Traversable t = t a — State Int (t (a, Int))
label = disperse step (,)

step :: State Int Int
step = do {n « get;put (n 4+ 1);returnn}

5.6 Backwards Traversal

Unlike the case with pure maps, the order in which elements are visited in an
effectful traversal is significant; in particular, iterating through the elements
backwards is observably different from iterating forwards. We can capture this
reversal quite elegantly as an idiom adapter, via the ‘marker type’ Backwards.

newtype Backwards ma =B{runB :: ma}

instance Idiom m = ldiom (Backwards m) where
pure =B opure
f@®x =B (pure (A f —f x)®runB x ® runB f)

Informally, Backwards m is an idiom if m is, but any effects happen in reverse; in
this way, the symmetric ‘backwards’ embedding of monads into idioms referred to
in Section [5.2] can be expressed in terms of the forwards embedding given there.
(Such marker types are generally a useful technique for selecting a particular
ad-hoc datatype-generic implementation.)

Datatype-Generic Programming 49

An adapter can be parcelled up existentially:

data |Adapter m = vg. Idiom (g m) =
IAdapter (va.ma —gma) (Va.gma —ma)

backwards :: Idiom m = IAdapter m
backwards = |Adapter B runB

and used in a parametrized traversal, for example to label backwards:

ptraverse :: (Idiom m, Traversable t) =
IAdapter m — (a — mb) —ta — m (th)
ptraverse (IAdapter wrap unwrap) f = unwrap o traverse (wrap o f)

lebal = ptraverse backwards (\a — step)
Of course, there is a trivial forwards adapter too, which can be used as a default.

newtype Forwards ma = F{runF : ma}

instance Idiom m = Idiom (Forwards m) where
pure =F opure
f ®@x =F (runF f ® runF x)

forwards :: Idiom m = 1Adapter m

forwards = IAdapter F runF

5.7 Laws of Traverse

The traverse operator is ad-hoc datatype-generic; one must define it indepen-
dently for each Traversable datatype (although, as noted above, its definition
is in principle derivable). The type class Traversable determines its signature,
but in line with other instances of genericity by signature such as Functor and
Monad, we should consider ‘healthiness conditions’ on the definition.

Free Theorems. The free theorem [TT7/132] arising from the type of dist is
dist o fmap (fmap k) = fmap (fmap k) o dist
As corollaries, we get the following two free theorems of traverse:

traverse (g oh) = traverse g o fmap h
traverse (fmap k o f) = fmap (fmap k) o traverse f

These laws are not constraints on the implementation of dist and traverse; they
follow automatically from their types.

Composition. We have seen that idioms compose: there is an identity idiom Id
and, for any two idioms m and n, a composite idiom Comp m n. We impose on
implementations of dist the constraint of respecting this compositional structure.
Specifically, the distributor dist respects the identity idiom:

50 J. Gibbons

dist o fmap Id = Id
and the composition of idioms:
dist - fmap Comp = Comp o fmap dist o dist
As corollaries, we get analogous properties of traverse.

traverse (Id o f) =1d o fmap f
traverse (Comp o fmap f o g) = Comp o fmap (traverse f) o traverse g

Both of these corollaries have interesting interpretations. The first says that
traverse interpreted in the identity idiom is essentially just fmap, as mentioned
in Section The second provides a fusion rule for traversals, whereby two
consecutive traversals can be fused into one. We use this fusion rule in Section[5.8

Naturality. We also impose the constraint that the distributor dist is natural
in the idiom, as follows. An idiom transformation ¢::ma — n a from idiom m
to idiom n is a polymorphic function (natural transformation) that respects the
idiom structure:

¢pure,, a = pure,, a
¢ (mf ®,, mx) = ¢mf ®,, ¢ mx

(Here, the idiom operators are subscripted by the idiom, for clarity.) Then dist
must satisfy the following naturality property: for idiom transformation ¢,

dist,, o fmap ¢ = ¢ o dist,,

For example, pure,, cunld is an idiom transformation from idiom ld to idiom m,
because

pure,, o unld o pure ;,
= { pure,=1d }
pure,,

and

pure,, (unld (mf &g mx))

= { mf ®ymx=1Id ((unld mf) (unld mx)) }
pure,, ((unld mf) (unld mx))

= { pure homomorphism }
pure,, (unld mf) ®,, pure,, (unld mx)

Therefore pure,, o unld must commute with dist, in the following sense:

dist,,, o fmap (pure,, ounld) = pure,, o unld o dist ;4

Datatype-Generic Programming 51

As a consequence, we get a ‘purity law’:
traverse pure = pure
because

traverse,, pure,,
= { traverse }
dist,,, o fmap pure,,
= {unldeld=id }
dist,,, - fmap pure,, o fmap unld o fmap Id
= { assumption }
pure,, o unld o dist ;4 o fmap Id
= { compositionality: dist;; o fmap Id =1d }
pure,,

This is an entirely reasonable property of traversal; one might say that it im-
poses a constraint of shape preservation. (But there is more to it than shape
preservation: a traversal that twists pairs necessarily ‘preserves shape’, because
pairs are Naperian, but still breaks this law.) For example, consider the following
definition of traverse on binary trees, in which the two children are swapped on
traversal:

instance Traversable Btree where
traverse f (Tipa) =pure Tip®f a
traverse f (Bin t u) = pure Bin ® traverse f u ® traverse f t

With this definition, traverse pure = pure o reflect, where reflect (defined in Sec-
tion 7)) reverses a tree, and so the purity law does not hold; this is because the
corresponding definition of dist is not natural in the idiom. Similarly, a defini-
tion with two copies of traverse f t and none of traverse f u makes traverse pure
purely return a tree in which every right child has been overwritten with its
left sibling. Both definitions are perfectly well-typed, but (according to our con-
straints) invalid.

On the other hand, the following definition, in which the traversals of the
two children are swapped, but the Bin operator is flipped to compensate, is
blameless.

instance Traversable Btree where
traverse f (Tipa) =pure Tip®f a
traverse f (Bin t u) = pure (flip Bin) & traverse f u ® traverse f t

(Here, flip f xy = f y x.) The effect of the reversal is that elements of the tree
are traversed ‘from right to left’, which we consider to be a reasonable, if rather
odd, definition of traverse. The corresponding distributor is

distB (Tipa) =pure Tip®a
distB (Bin t u) = pure (flip Bin) ® distB u & distB t

52 J. Gibbons

or equivalently

distB = foldB f g where
f ma = pure Tip ® ma
g mt mu = pure (flip Bin) ® mu ® mt

where foldB is the fold for Btree defined in Section 2.7 for which the free theorem
turns out to be the following fusion law:

h ofoldB f g = foldB f’ g’ o fmap h
~=
h(fa)=f"(ha)Ah(gab)=g'(ha)(hb)

We leave as a straightforward task for the reader the proof using this fusion law
that

distB o fmap ¢ = ¢ o distB

Hence distB is natural in the idiom, and as a consequence the purity law applies
to this right-to-left traversal.

Composition of Monadic Traversals. Another consequence of naturality is
a fusion law specific to monadic traversals. The natural form of composition for
monadic computations is called Kleisli composition:

(e)::Monadm = (b - mc)— (a—mb)— (a—mc)
(feg)x =do{y «—gx;z—fy;returnz}

The monad m is commutative if, for all mx and my,

do {x «— mx;y <« my;return (x,y)}
=do {y « my;x < mx;return (x,y)}

When interpreted in the idiom of a commutative monad m, traversals with
f:b—mcandg:a— mb fuse:

traverse f e traverse g = traverse (f e g)

This follows from the fact that pounComp forms an idiom transformation from
Comp m m to m, for a commutative monad m with join operator u. (The proof
is straightforward, albeit a little messy.)

This fusion law for the Kleisli composition of monadic traversals shows the
benefits of the more general idiomatic traversals quite nicely. Note that the cor-
responding more general fusion law for idioms in Section [allows two different
idioms rather than just one; moreover, there are no side conditions concerning
commutativity. The only advantage of the monadic law is that there is just one
level of monad on both sides of the equation; in contrast, the idiomatic law has

Datatype-Generic Programming 53

two levels of idiom, because there is no analogue of the p operator of a monad
for collapsing two levels to one (and besides, those two levels may be for different
idioms).

We conjecture (but have not proved) that the monadic traversal fusion law also
holds even if m is not commutative, provided that f and g themselves commute
(f g = g of); but this no longer follows from naturality of the distributor in
any simple way, and it imposes the alternative constraint that the three types
a,b,c are equal.

No Duplication. Another constraint we impose upon a definition of traverse
is that it should visit each element precisely once. For example, we consider this
definition of traverse on lists to be bogus, because it visits each element twice.

instance Traversable [] where
traverse f [] = pure []
traverse f (x :xs) = pure (const (:)) ®f x & f x ® traverse f xs

Note that this definition satisfies the purity law above; but we would still like to
rule it out.

This axiom is harder to formalize, and we do not yet have a nice theoretical
treatment of it. One way of proceeding is in terms of indexing. We require that
the function labels returns an initial segment of the natural numbers, where

labels :: Traversable t = ta — [Int]
labels t = contents $ fmap snd $ fst $ runState (label t) 0

Here, $ denotes function application, and label is as defined in Section The
bogus definition of traverse on lists given above is betrayed by the fact that we
get labels "abc" = [1,1,3, 3,5, 5], which is not an initial segment of the naturals.

5.8 Example

As a small example of fusion of traversals, we consider the familiar repmin prob-
lem [TT]. The task here is to take a binary tree of integers, compute the minimum
element, then replace every element of the tree by that minimum — but to do so
in a single traversal rather than the obvious two. Our point here is not the circu-
larity for which the problem was originally invented, but simply an illustration
of the two kinds of traversal (mapping and accumulating) and their fusion.

Flushed with our success at capturing different kinds of traversal idiomatically,
we might try computing the minimum in a monoidal idiom,

newtype Min a = Min{unMin ::a}

instance (Ord a, Bounded a) = Monoid (Min a) where
0 = Min maxBound
X @Yy = Min (unMin x ‘min‘unMin y)

tmin, :: (Ord a,Bounded a) == a — K (Min a) a

tmin; = K o Min

54 J. Gibbons

and replacing in the idiom of the environment monad.

trep; :a — Envbb
trep; = A\a — Env id

These two compose elegantly (modulo the type isomorphisms):

trepmin, :: (Ord a, Bounded a) = Btree a — Btree a
trepmin, t = unEnv (traverse trep; t) (unMin $ unK $ traverse tmin; t)

However, the two traversals do not fuse: the first traversal computes the mini-
mum and discards the tree, which then needs to be reintroduced for the second
traversal.

Notice that trepmin, could be datatype-generic in the data structure tra-
versed; the only constraint is that it should be Traversable.

grepmin, :: (Ord a, Bounded a, Traversable t) ==ta —ta
grepmin, t = unEnv (traverse trep, t) (unMin $ unK § traverse tmin; t)

The same observation applies to all versions of trepmin in this section; but to
avoid carrying the Traversable t context around, we specialize to Btree through-
out.

The problem with trepmin, is that the traversal that computes the minimum
discards the tree. Apparently this first phase ought to retain and return the tree
as well; this suggests using the idiom of the state monad. The state records the
minimum element; the first traversal updates this state, and the second traversal
reads from it.

tmin, ::Orda = a — Statea a

tmin, a = do {b « get; put (min a b);return a}
trep, ::a — Stateaa

trep, a = get

Again, traversals with tminy and trep, compose.

trepmin, :: (Ord a, Bounded a) = Btree a — Btree a
trepmin, t = fst (runState iteration maxBound)
where iteration = (traverse trep, e traverse tmins) t

But when we try to apply the fusion law for monadic traversals, we are forced to
admit that the State monad is the epitome of a non-commutative monad, and
in particular that the two stateful operations tming and trep, do not commute;
therefore, the two traversals do not fuse.

There is a simple way to make the two stateful operations commute, and that
is by giving them separate parts of the state on which to act. The following im-
plementation uses a pair as the state; the first component is where the minimum
element is accumulated, and the second component holds what is copied across
the tree.

Datatype-Generic Programming 55

tmins :: Ord a = a — State (a,b) a

tminsa = do {(a’,b) < get;put (min aa’,b);return a}
trep, ::a — State (a,b) b

trep;a =do{(a’,b) « get;returnb}

Of course, the whole point of the exercise is that the two parts of the state should
interact; but with lazy evaluation we can use the standard circular programming
trick that originally motivated the repmin problem [I1] to tie the two together,
outside the traversal.

trepmin, :: (Ord a, Bounded a) = Btree a — Btree a
trepming t = let (u, (m,)) = runState iteration (maxBound, m) in u
where iteration = (traverse trep, e traverse tmins) t

Now, although the State monad is not commutative, the two stateful operations
tming and trep; commute (because they do not interfere), and the two traversals
may be fused into one.

trepmin’ :: (Ord a, Bounded a) = Btree a — Btree a
trepmin t = let (u, (m,)) = runState iteration (maxBound, m) in u
where iteration = traverse (trep; e tmings) t

Modifying the stateful operations in this way to keep them from interfering is
not scalable, and it is not clear whether this trick is possible in general anyway.
Fortunately, idioms provide a much simpler means of fusion. Using the same
single-component stateful operations tming and trep, as above, but dispensing
with Kleisli composition, we get the following composition of traversals.

trepmin, :: (Ord a, Bounded a) = Btree a — Btree a
trepmin, t = let (sf, m) = runState iteration maxBound
in fst (runState sf m)
where iteration = fmap (traverse trep,) (traverse tmins t)

Kleisli composition has the effect of flattening two levels into one; here we have
to deal with both levels separately, hence the two occurrences of runState. The
payback is that fusion of idiomatic traversals applies without side conditions!

trepmin’, :: (Ord a, Bounded a) = Btree a — Btree a
trepmin’; t = let (sf, m) = runState iteration maxBound
in fst (runState sf m)
where iteration = unComp $ traverse (Comp o fmap trep, o tmin,) t

Note that the Kleisli composition of two monadic computations imposes the
constraint that both computations are in the same monad; in our example above,
both computing the minimum and distributing the result use the State monad.
However, these two monadic computations are actually rather different in struc-
ture, and use different aspects of the State monad: the first writes, whereas the

56 J. Gibbons

second reads. We could capture this observation directly by using two different
monads, each tailored for its particular use.

tmins :: (Ord a, Bounded a) = a — Writer (Min a) a
tmins a = do {tell (Min a);return a}

trep; ::a — Reader aa

trep; a = ask

Here, tell adds a value to a monoidal state, returning unit, and ask retrieves the
state.

newtype Writer s a = Writer { runWriter :: (a,s)}
tell :: Monoid s = s — Writer s ()

newtype Reader s a = Reader {runReader ::s — a}
ask :: Reader s s

The use of two different monads like this rules out Kleisli composition. However,
idiomatic composition handles two different idioms (and hence two different
monads) with aplomb.

trepming :: (Ord a, Bounded a) = Btree a — Btree a
trepming t = let (r,m) = runWriter iteration in runReader r (unMin m)
where iteration = fmap (traverse trep;) (traverse tmins t)

These two traversals fuse in exactly the same way as before.

trepming :: (Ord a, Bounded a) = Btree a — Btree a
trepming t = let (r,m) = runWriter iteration in runReader r (unMin m)
where iteration = unComp $ traverse (Comp o fmap trep; o tmin;) t

6 Conclusions

The material in these lecture notes owes much to the work of a number of col-
leagues. Section 2 builds on many discussions with colleagues in and around the
Datatype-Generic Programming project at Oxford and Nottingham. My views
on origami programming in Section[Blare based on ideas from the Algebra of Pro-
gramming (‘Squiggol’) community, and especially the work of: Roland Backhouse
and Grant Malcolm [92I76]; Richard Bird and Oege de Moor [9/I0]; Maarten
Fokkinga, Erik Meijer and Ross Paterson [32/T01]; Johan Jeuring, Patrik Jans-
son, Ralf Hinze and Andres Loh [68/69I57U60/9T]; and John Hughes [66]. The
analogy between design patterns and higher-order datatype-generic programs
discussed in Section Ml elaborates on arguments developed in a course presented
while on sabbatical at the University of Canterbury in New Zealand in early
2005, and explored further at tutorials at ECOOP [39] and OOPSLA [40] later
that year; the contribution of participants at those venues and at less formal
presentations of the same ideas is gratefully acknowledged. The results reported

Datatype-Generic Programming 57

in Section [are the outcome of joint work with Bruno Oliveira, and have ben-
efited greatly from discussions with Conor McBride and Ross Paterson, whose
work provided most of the technical results. To all of these people, and to the
unnamed others who have also contributed, I am very grateful for encourage-
ment, inspiration and insight. I would like to add final thanks to Andres L&h
and Ralf Hinze for their extremely useful 1hs2TEX translator.

References

1.

2.

10.

11.

12.

13.

14.

15.

Reference manual for the Ada programming language. American National Stan-
dards Institute, Inc., ANSI/MIL-STD-1815A-1983 (1983)

Aigner, M., Ziegler, G.M.: Proofs from The Book, 3rd edn. Springer, Heidelberg
(2004)

Alexandrescu, A.: Modern C++ Design. Addison-Wesley, Reading (2001)
Austern, M.: Generic Programming and the STL: Using and Extending the C++
Standard Template Library. Addison-Wesley, Reading (1998)

Backhouse, R.C., Carré, B.A.: Regular algebra applied to path-finding problems.
Journal of the Institute of Mathematics and Applications 15, 161-186 (1975)
Backhouse, R., Hoogendijk, P.: FIP TC2/WG2.1 State-of-the-Art Report on For-
mal Program Development. In: Méller, B., Schuman, S., Partsch, H. (eds.) Formal
Program Development. LNCS, vol. 755, pp. 7-42. Springer, Heidelberg (1993)
Backhouse, R.C., Jansson, P., Jeuring, J., Meertens, L.G.L.T.: Generic program-
ming: An introduction. In: Swierstra, S.D., Oliveira, J.N. (eds.) AFP 1998. LNCS,
vol. 1608, pp. 28-115. Springer, Heidelberg (1999)

Bidoit, M., Mosses, P.: User Manual. In: Bidoit, M., Mosses, P.D. (eds.) CASL
User Manual. LNCS, vol. 2900, Springer, Heidelberg (2004)

Bird, R., de Moor, O.: The Algebra of Programming. Prentice-Hall, Englewood
Cliffs (1996)

Bird, R., de Moor, O., Hoogendijk, P.: Generic functional programming with types
and relations. Journal of Functional Programming 6(1), 1-28 (1996)

Bird, R.S.: Using circular programs to eliminate multiple traversals of data. Acta
Informatica 21, 239-250 (1984)

Bird, R.S.: Lectures on constructive functional programming. In: Broy, M. (ed.)
Constructive Methods in Computer Science, pp. 151-218. Springer, Heidelberg
Also available as Technical Monograph PRG-69, from the Programming Research
Group, Oxford University (1988)

Bracha, G., Cohen, N., Kemper, C., Marx, S., Odersky, M., Panitz, S.-
E., Stoutamire, D., Thorup, K., Wadler, P.: Add generic types to the Java
programming language (April 2001), JSR 14 http://www.jcp.org/en/jsr/
detail?id=014

Bronstein, M., Burge, W., Daly, T., Davenport, J., Dewar, M., Dunstan, M.,
Fortenbacher, A., Gianni, P., Grabmeier, J., Guidry, J., Jenks, R., Lambe, L.,
Monagan, M., Morrison, S., Sit, W., Steinbach, J., Sutor, R., Trager, B., Watt,
S., Wen, J., Williamson, C.: The Thirty-Year Horizon (2003),
http://wiki.axiom-developer.org/Mirrors?go=/public/book2.pdf
Buchlovsky, P., Thielecke, H.: A type-theoretic reconstruction of the Visitor pat-
tern. In: 21st Conference on Mathematical Foundations of Programming Seman-
tics. Electronic Notes in Theoretical Computer Science, vol. 155 (2005)

http://www.jcp.org/en/jsr/detail?id=014
http://www.jcp.org/en/jsr/detail?id=014
http://wiki.axiom-developer.org/Mirrors?go=/public/book2.pdf

58

16

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.

39.

40.

J. Gibbons

Cardelli, L., Wegner, P.: On understanding types, data abstraction and polymor-
phism. ACM Computing Surveys 17(4), 471-522 (1985)

Cheney, J., Hinze, R.: A lightweight implementation of generics and dynamics.
In: Haskell Workshop, pp. 90-104 (2002)

Claessen, K., Hughes, J.: Specification based testing with QuickCheck. In: Gib-
bons, de Moor[45], pp. 17-40

Clarke, D., Loh, A., Haskell, G.: specifically. In: Gibbons, Jeuring [47], pp. 21-47
Mosses, P.D. (ed.): CASL Reference Manual. LNCS, vol. 2960. Springer, Heidel-
berg (2004)

Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT
Press, Cambridge (1990)

Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools and Ap-
plications. Addison-Wesley, Reading (2000)

Damas, L., Milner, R.: Principal type schemes for functional programs. In: Prin-
ciples of Programming Languages, pp. 207-212 (1982)

Day, N., Launchbury, J., Lewis, J.: Logical abstractions in haskell. In: Haskell
Workshop. Utrecht University Department of Computer Science, Technical Re-
port UU-CS-1999-28 (October 1999)

Dehnert, J., Stepanov, A.: Fundamentals of generic programming. In: Jazayeri,
M., Musser, D.R., Loos, R.G.K. (eds.) Generic Programming. LNCS, vol. 1766,
pp. 1-11. Springer, Heidelberg (2000)

dos Santos Oliveira, B.C., Gibbons, J.: TypeCase: A design pattern for type-
indexed functions. In: Leijen, D. (ed.) Haskell Workshop (2005)

Edmonds, J.: Matroids and the Greedy Algorithm. Mathematical Programming 1,
125-136 (1971)

Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1: Equations and
Initial Semantics. Springer, Heidelberg (1985)

Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 2: Module Specifi-
cations and Constraints. Springer, Heidelberg (1990)

Fokkinga, M.: Monadic maps and folds for arbitrary datatypes. Department INF,
Universiteit Twente (June 1994)

Fokkinga, M.M.: Tupling and mutumorphisms. The Squiggolist 1(4), 81-82 (1990)
Fokkinga, M.M., Meijer, E.: Program calculation properties of continuous alge-
bras. Technical Report CS-R9104, CWI, Amsterdam (January 1991)

Forman, I.R., Danforth, S.: Putting Metaclasses to Work. Addison-Wesley, Read-
ing (1999)

Gamma, E., Beck, K.: JUnit: Testing resources for extreme programming (2000)
http://www. junit.org/

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading (1995)

Ghani, N., Uustalu, T., Vene, V.: Build, augment and destroy, universally. In:
Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, Springer, Heidelberg (2004)
Gibbons, J.: Calculating functional programs. In: Blackhouse, R., Crole, R.L.,
Gibbons, J. (eds.) Algebraic and Coalgebraic Methods in the Mathematics of
Program Construction. LNCS, vol. 2297, pp. 148-203. Springer, Heidelberg (2002)
Gibbons, J.: Origami programming. In Gibbons, de Moor [45], pp. 41-60
Gibbons, J.: Design patterns as higher-order datatype-generic programs (June
2005), Tutorial presented at ECOOP http://2005.ecoop.org/8.html

Gibbons, J.: Design patterns as higher-order datatype-generic programs (Oc-
tober 2005) Tutorial presented at OOPSLA http://www.oopsla.org/2005/
ShowEvent.do?id=121

http://www.junit.org/
http://2005.ecoop.org/8.html
http://www.oopsla.org/2005/ShowEvent.do?id=121
http://www.oopsla.org/2005/ShowEvent.do?id=121

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

Datatype-Generic Programming 59

Gibbons, J.: Design patterns as higher-order datatype-generic programs. In:
Hinze, R. (ed.) Workshop on Generic Programming (September 2006)

Gibbons, J.: Metamorphisms: Streaming representation-changers. Science of Com-
puter Programming 65, 108-139 (2007)

Gibbons, J., Backhouse, R., Oliveira, B., Reig, F.: Datatype-generic programming
project (2003), http://web.comlab.ox.ac.uk/oucl/research/pdt/ap/dgp/
Gibbons, J., Oliveira, B.C.d.S.: The essence of the Iterator pattern. In: Uustalu,
T., McBride, C. (eds.) Mathematically-Structured Functional Programming
(2006)

Gibbons, J., de Moor, O. (eds.).: The Fun of Programming. Cornerstones in Com-
puting, Palgrave (2003) ISBN 1-4039-0772-2

Gibbons, J., Hutton, G., Altenkirch, T.: When is a function a fold or an unfold?
Electronic Notes in Theoretical Computer Science. In: Proceedings of Coalgebraic
Methods in Computer Science, vol. 44(1) (2001)

Gibbons, J., Jeuring, J.: Generic Programming. Kluwer Academic Publishers,
Dordrecht (2003)

Gibbons, J., Jones, G.: The under-appreciated unfold. In: Proceedings of the Third
ACM SIGPLAN International Conference on Functional Programming, pp. 273—
279, Baltimore, Maryland (September 1998)

Gibbons, J., Lester, D., Bird, R.: Enumerating the rationals. Journal of Functional
Programming 16, 281-291 (2006)

Gill, A., Launchbury, J., Peyton Jones, S.: A short cut to deforestation. In: Func-
tional Programming Languages and Computer Architecture (1993)

Girard, J.-Y.: Interprétation Fonctionnelle et Elimination des Coupures de
I’ Arithmétique d’Ordre Supérieur. PhD thesis, Université de Paris VII (1972)
Gorlatch, S., Lengauer, C.: Parallelization of divide-and-conquer in the Bird-
Meertens Formalism. Formal Aspects of Computing 3 (1995)

Gregor, D., Jarvi, J., Siek, J.G., Reis, G.D., Stroustrup, B., Lumsdaine, A.: Con-
cepts: Linguistic support for generic programming in C++. In: Object-Oriented
Programming, Systems, Languages, and Applications (2006)

Gregor, D., Schupp, S.: Making the usage of STL safe. In: Gibbons, Jeuring [47],
pp. 127-140

Guttag, J.V., Horning, J.J., Garland, S.J., Jones, K.D., Modet, A., Wing, J.M.:
Larch: Languages and Tools for Formal Specification. Texts and Monographs in
Computer Science. Springer, New York (1993)

Hagino, T.: A Categorical Programming Language. PhD thesis, Department of
Computer Science, University of Edinburgh (September 1987)

Hinze, R.: Polytypic values possess polykinded types. In: Backhouse, R.C.,
Oliveira, J.N. (eds.) MPC 2000. LNCS, vol. 1837, pp. 2-27. Springer, Heidelberg
(2000)

Hinze, R.: Generics for the masses. In: International Conference on Functional
Programming, pp. 236-243. ACM Press, New York (2004)

Hinze, R.: Church numerals, twice! Journal of Functional Programming 15(1),
1-13 (2005)

Hinze, R., Jeuring, J.: Generic Haskell: Practice and theory. In: Backhouse, R.,
Gibbons, J. (eds.) Generic Programming. LNCS, vol. 2793, pp. 1-56. Springer,
Heidelberg (2003)

Hinze, R., Jeuring, J., Loh, A.: Comparing approaches to generic programming
in Haskell. In this volume (2006)

Hinze, R., Peyton Jones, S.: Derivable type classes. In: Haskell Workshop (2000)

http://web.comlab.ox.ac.uk/oucl/research/pdt/ap/dgp/

60

63
64

65.

66.

67.
68.

69.

70.

71.

72.

73.

4.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.
86.

87.

J. Gibbons

Hinze, R., Loh, A.: Generic programming, now! In this volume (2006)

Hoare, C.A.R.: Notes on data structuring. In: Dahl, O.-J., Dijkstra, E.W., Hoare,
C.A.R. (eds.) Structured Programming, APIC studies in data processing, pp. 83—
174. Academic Press, London (1972)

Hoogendijk, P., Backhouse, R.: When do datatypes commute? In: Moggi, E.,
Rosolini, G. (eds.) CTCS 1997. LNCS, vol. 1290, pp. 242-260. Springer, Heidel-
berg (1997)

Hughes, J.: Why functional programming matters. Computer Journal 32(2), 98-
107 (1989)

Iverson, K.E.: A Programming Language. Wiley, Chichester (1962)

Jansson, P., Jeuring, J.: PolyP - a polytypic programming language extension. In:
Principles of Programming Languages, pp. 470-482 (1997)

Jansson, P.: Functional Polytypic Programming. PhD thesis, Computing Science,
Chalmers University of Technology and Goteborg University, Sweden (May 2000)
Jansson, P., Jeuring, J.: Polytypic data conversion programs. Science of Computer
Programming 43(1), 35-75 (2002)

Jay, B., Steckler, P.: The functional imperative: Shape! In: Hankin, C. (ed.) ESOP
1998 and ETAPS 1998. LNCS, vol. 1381, pp. 139-153. Springer, Heidelberg (1998)
Jay, C.B.: A semantics for shape. Science of Computer Programming 25(2-3),
251-283 (1995)

Jenks, R.D., Sutor, R.S.: Axiom: The Scientific Computing System. Springer,
Heidelberg (1992)

Jensen, K., Wirth, N.: Pascal User Manual and Report. Springer, Heidelberg
(1975)

Jesperson, H.: POSIX shell and utilities (p1003.2) (September 1991), Draft 11.2
http://www.nic.funet.fi/pub/doc/posix/p1003.2/

Jeuring, J., Meijer, E.: In: Jeuring, J., Meijer, E. (eds.) Advanced Functional
Programming. LNCS, vol. 925, Springer, Heidelberg (1995)

Jones, M.P., Duponcheel, L.: Composing monads. Technical Report RR-~1004,
Department of Computer Science, Yale (December 1993)

Kabanov, J., Vene, V.: Recursion schemes for dynamic programming. In: Uustalu,
T. (ed.) MPC 2006. LNCS, vol. 4014, Springer, Heidelberg (2006)

Kahn, J.: It’s alive! Wired, 10.03:72-77 (March 2002)

Kennedy, A., Syme, D.: Design and implementation of generics for the. NET Com-
mon Language Runtime. In: Programming Language Design and Implementation,
Snowbird, Utah, pp. 1-12 (2001)

Kiczales, G., des Riviéres, J., Bobrow, D.G.: The Art of the Metaobject Protocol.
MIT Press, Cambridge (1991)

Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.-
M., Irwin, J.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220-242. Springer, Heidelberg (1997)

King, D.J., Wadler, P.: Combining monads. In: Launchbury, J., Sansom, P.M.
(eds.) Functional Programming, Glasgow 1992, Springer, Heidelberg (1993)
Kiselyov, O., Lammel, R.: Haskell’s Overlooked Object System. Technical Report
¢s/0509027, arXiv.org (September 2005)

Korte, B., Lovész, L., Schrader, R.: Greedoids. Springer, Heidelberg (1991)
Kiihne, T.: Internal iteration externalized. In: Guerraoui, R. (ed.) ECOOP 1999.
LNCS, vol. 1628, pp. 329-350. Springer, Heidelberg (1999)

Lazic, R.: A Semantic Study of Data Independence with Applications to Model
Checking. D.Phil. thesis, Oxford University Computing Laboratory (1999)

http://www.nic.funet.fi/pub/doc/posix/p1003.2/

88.

89.
90.

91.

92.

93.

94.

95.

96.

97.

98.
99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

Datatype-Generic Programming 61

Lazic, R., Nowak, D.: On a semantic definition of data independence. In: Hof-
mann, M.O. (ed.) TLCA 2003. LNCS, vol. 2701, pp. 226-240. Springer, Heidel-
berg Technical Report CS-RR-392, Department of Computer Science, University
of Warwick (2003)

Liskov, B.: A history of CLU. ACM SIGPLAN Notices 28(3), 133-147 (1993)
Liskov, B., Guttag, J.: Abstraction and Specification in Program Development.
MIT Electrical Engineering and Computer Science Series. MIT Press, Cambridge
(1986)

Loh, A.:Exploring Generic Haskell. PhD thesis, Utrecht University (2004)
Malcolm, G.: Data structures and program transformation. Science of Computer
Programming 14, 255-279 (1990)

Martin, U., Nipkow, T.: Automating Squiggol. In: Broy, M., Jones, C.B. (eds.)
IFIP TC2 Working Conference on Programming Concepts and Methods, Sea of
Galilee, Israel, pp. 233-246. North-Holland, Amsterdam (1990)

McBride, C.: Naperian functors. Personal communication by email (5th April
2006)

McBride, C., Paterson, R.: Applicative programming with effects. Journal of Func-
tional Programming (to appear)

McKinna, J.: Why dependent types matter. In: Principles of Programming Lan-
guages (2006)

Meacham, J.: DrIFT homepage (2004), http://repetae.net/ john/computer/
haskell/DrIFT/

Meertens, L.: Paramorphisms. Formal Aspects of Computing 4(5), 413-424 (1992)
Meertens, L.: Calculate polytypically! In: Kuchen, H., Swierstra, S.D. (eds.)
PLILP 1996. LNCS, vol. 1140, pp. 1-16. Springer, Heidelberg (1996)

Meertens, L.: Functor pulling. In: Backhouse, R., Sheard, T. (eds.) Workshop on
Generic Programming, Marstrand, Sweden (1998)

Meijer, E., Fokkinga, M., Paterson, R.: Functional programming with bananas,
lenses, envelopes and barbed wire. In: Hughes, J. (ed.) Functional Programming
Languages and Computer Architecture. LNCS, vol. 523, pp. 124-144. Springer,
Heidelberg (1991)

Meijer, E., Jeuring, J.: Merging monads and folds for functional programming.
In: Jeuring and Meijer [76]

Milner, R.: A theory of type polymorphism in programming. Journal of Computer
and System Sciences 17, 348-375 (1978)

Milner, R., Tofte, M., Harper, R., MacQueen, D.: Definition of Standard ML.
revised edn., MIT Press, Cambridge (1997)

Moggi, E.: Notions of computation and monads. Information and Computa-
tion 93(1) (1991)

Moggi, E., Bellé, G., Barry Jay, C.: shapely functors and traversals. In: Hoffman,
M., Pavlovic, D., Rosolini, P. (eds.) Category Theory in Computer Science (1999)
Musser, D.R., Stepanov, A.A.: The Ada Generic Library linear list processing
packages. Springer, New York (1989)

Naur, P., Backus, J.W., Bauer, F.L., Green, J., Katz, C., McCarthy, J., Perlis,
A.J., Rutishauser, H., Samelson, K., Vauquois, B., Wegstein, J.H., van Wijngaar-
den, A., Woodger, M.: Revised report on the algorithmic language ALGOL 60.
Communications of the ACM 6(1), 1-17 (1963)

Pardo, A.: Fusion of recursive programs with computation effects. Theoretical
Computer Science 260, 165-207 (2001)

Pardo, A.: Combining datatypes and effects. In: Vene, V., Uustalu, T. (eds.) AFP
2004. LNCS, vol. 3622, pp. 171-209. Springer, Heidelberg (2005)

http://repetae.net/~john/computer/haskell/DrIFT/
http://repetae.net/~john/computer/haskell/DrIFT/

62

111.

112.

113.

114.

115.

116.

117.

118.

119.
120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

J. Gibbons

Perlis, A.J., Samelson, K.: Preliminary report: International Algebraic Language.
Communications of the ACM 1(12), 8-22 (1958)

Peyton Jones, S.: The Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press, Cambridge (2003)

Peyton Jones, S., Vytiniotis, D., Weirich, S., Washburn, G.: Simple unification-
based type inference for generalized algebraic data types. In: International Con-
ference on Functional Programming (2006)

Peyton Jones, S., Wadler, P.: Imperative functional programming. In: Principles
of Programming Languages, pp. 71-84 (1993)

Programatica Team. Programatica tools for certifiable, auditable development of
high-assurance systems in Haskell. In: High Confidence Software and Systems
Conference. National Security Agency (April 2003)

Reynolds, J.C.: Towards a theory of type structure. In: Robinet, B. (ed.) Pro-
gramming Symposium. LNCS, vol. 19, pp. 408-425. Springer, Heidelberg (1974)
Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: Information
Processing 83, pp. 513-523. Elsevier, Amsterdam (1983)

Ruehr, F.: Analytical and Structural Polymorphism Expressed Using Patterns
over Types. PhD thesis, University of Michigan (1992)

Sheard, T.: Generic programming in {2mega In this volume (2006)

Siek, J., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library. Addison-Wesley,
Reading (2002)

Siek, J., Lumsdaine, A.: Essential language support for generic programming. In:
Programming Language Design and Implementation, pp. 73-84 (2005)
Skillicorn, D.B.: The Bird-Meertens Formalism as a parallel model. In: Kowalik,
J.S., Grandinetti, L. (eds.) Software for Parallel Computation. NATO ASI Series
F, vol. 106, Springer, Heidelberg (1993)

STOP project. International Summer School on Constructive Algorithmics, Hol-
lum, Ameland (1989)

Strachey, C.: Fundamental concepts in programming languages. Higher-Order and
Symbolic Computation. Lecture notes from Summer School in Computer Pro-
gramming 13(1/2), 1-49 (2000)

Taha, W.: A gentle introduction to multi-stage programming. In: Lengauer, C.,
Batory, D., Consel, C., Odersky, M. (eds.) Domain-Specific Program Generation.
LNCS, vol. 3016, pp. 30-50. Springer, Heidelberg (2004)

Unruh, E.: Prime number computation. ANSI X3J16-94-0075/ISO WG21-462
(1994)

Uustalu, T., Vene, V.: Primitive (co)recursion and course-of-value (co)iteration.
Informatica 10(1), 5-26 (1999)

van Wijngaarden, A., Mailloux, B.J., Peck, J.E.L., Koster, C.H.A., Sintzoff, M.,
Lindsey, C.H., Meertens, L.G.L.T., Fisker, R.G.: Revised report on the algorith-
mic language ALGOL 68. Acta Informatica 5(1-3) (1975)

Veldhuizen, T.: Active Libraries and Universal Languages. PhD thesis, Computer
Science, Indiana University (2004)

Vene, V., Uustalu, T.: Functional programming with apomorphisms (corecursion).
Proceedings of the Estonian Academy of Sciences: Physics, Mathematics. In: 9th
Nordic Workshop on Programming Theory 47(3), 147-161 (1998)

Vytiniotis, D., Washburn, G., Weirich, S.: An open and shut typecase. In: Inter-
national Conference on Functional Programming (2004)

Wadler, P.: Theorems for free! In Functional Programming Languages and Com-
puter Architecture, pp. 347-359. ACM, New York (1989)

133.

134.

135.

136.

137.

138.

7

Datatype-Generic Programming 63

Wadler, P.: Deforestation: Transforming programs to eliminate trees. Theoretical
Computer Science 73, 231-248 (1990)

Wadler, P.: Comprehending monads. Mathematical Structures in Computer Sci-
ence 2(4), 461-493 (1992)

Wadler, P.: Monads for functional programming. In: Broy, M. (ed.) Program De-
sign Calculi: Proceedings of the Marktoberdorf Summer School. Also in [76] (1992)
Wadler, P.: How to solve the reuse problem? Functional programming. In: Inter-
national Conference on Software Reuse, pp. 371-372. IEEE, Los Alamitos (1998),
http://doi.ieeecomputersociety.org/10.1109/ICSR.1998.685772

Wadler, P.L.: The expression problem. Posting to java-genericity mailing list (No-
vember 12, 1998)

Wirth, N., Hoare, C.A.R.: A contribution to the development of ALGOL. Com-
munications of the ACM 9(6), 413-432 (1966)

Appendix: Java Programs

Section 4] provides a nearly complete implementation of the document appli-
cation in a higher-order datatype-generic style; all that is missing is a definition
for the spelling corrector correct. In contrast, Section L2 presents only the out-
line of a Java implementation of the same application. For completeness, this
appendix presents the Java code.

7.1 Component

public interface Component {
void accept (Visitor v);
Iterator getlterator ();

}

7.2 Section

import java.util .\Vector;
import java.util.Enumeration;

public class Section implements Component {
protected Vector children;
protected String title;
public Section (String title){

children = new Vector ();
this.title = title;

public String getTitle (){

}

return title;

public void addComponent (Component c){

children.addElement (c);

http://doi.ieeecomputersociety.org/10.1109/ICSR.1998.685772

64 J. Gibbons

public Enumeration getChildren (){
return children.elements ();

}

public Iterator getlterator (){
return new Sectionlterator (this);

}

public void accept (Visitor v){
v.visitSection (this);

¥

}

7.3 Paragraph

public class Paragraph implements Component {
protected String body;
public Paragraph (String body){
setBody (body);

public void setBody (String s){
body = s;

public String getBody (){
return body;

public Iterator getlterator (){
return new Paragraphlterator (this);
}
public void accept (Visitor v){
v.visitParagraph (this);
}
}

7.4 Iterator

public interface Iterator {
void iterate (Action a);

}

Datatype-Generic Programming

7.5 Sectionlterator

import java.util.Enumeration;

public class Sectionlterator implements Iterator {
protected Section s;
public Sectionlterator (Section s){
this.s = s;

public void iterate (Action a){
for (Enumeration e = s.getChildren ();
e.hasMoreElements ();){
((Component) (e.nextElement ())).
getlterator ().iterate (a);

7.6 Paragraphlterator

public class Paragraphlterator implements Iterator {
protected Paragraph p;
public Paragraphlterator (Paragraph p){
this.p = p;

public void iterate (Action a){
a.apply (p);
}

}

7.7 Action

public interface Action {
void apply (Paragraph p);

7.8 SpellCorrector

public class SpellCorrector implements Action {
public void apply (Paragraph p){
p.setBody (correct (p.getBody ()));

public String correct (String s){
return s.toLowerCase ();

}
}

65

66 J. Gibbons

7.9 Visitor

public interface Visitor {
void visitParagraph (Paragraph p);
void visitSection (Section s);

}
7.10 PrintVisitor

import java.util.Enumeration;
import java.util .\Vector;

public class PrintVisitor implements Visitor {

protected String indent = "";
protected Vector lines = new Vector ();

public String [] getResult (){
String [] ss = new String [0];
ss = (String []) lines.toArray (ss);
return ss;

}

public void visitParagraph (Paragraph p){
lines.addElement (indent + p.getBody ());

}

public void visitSection (Section s){
String currentindent = indent;
lines.addElement (indent + s.getTitle ());
for (Enumeration e = s.getChildren ();
e.hasMoreElements ();){
indent = currentindent +" ;
((Component) e.nextElement ()).accept (this);

indent = currentindent;

¥
}

7.11 Builder

public interface Builder {
int addParagraph (String body, int parent)
throws InvalidBuilderld;
int addSection (String title, int parent)
throws InvalidBuilderld;

Datatype-Generic Programming

7.12 InvalidBuilderld

public class InvalidBuilderld extends Exception{
public InvalidBuilderld (String reason){
super (reason);

7.13 ComponentBuilder

import java.util .AbstractMap;
import java.util.HashMap;

public class ComponentBuilder implements Builder {
protected int nextld = 0;
protected AbstractMap comps = new HashMap ();
public int addParagraph (String body, int pld)
throws InvalidBuilderld {
return addComponent (new Paragraph (body), pld);

public int addSection (String title, int pld)
throws InvalidBuilderld {
return addComponent (new Section (title), pld);
}
public Component getProduct (){
return (Component) comps.get (new Integer (0));
}
protected int addComponent (Component c, int pld)
throws InvalidBuilderld {
if (pld <0){ // root component
if (comps.isEmpty ()){
comps.put (new Integer (nextld),c);
return nextld ++;
}
else
throw new InvalidBuilderld
("Duplicate root");
telse{ // non-root
Component parent = (Component) comps.
get (new Integer (pld));
if (parent null){
throw new InvalidBuilderld
("Non-existent parent");
}else {
if (parent instanceof Paragraph){
throw new InvalidBuilderld

67

68 J. Gibbons

("Adding child to paragraph");
} else {
Section s = (Section) parent;
s.addComponent (c);
comps.put (new Integer (nextld), c);
return nextld++;

7.14 PrintBuilder

This is the only class with a non-obvious implementation. It constructs the
printed representation (a String []) of a Component on the fly. In order to do so,
it needs to retain some of the tree structure. This is done by maintaining, for
each Component stored, the unique identifier of its right-most child (or its own
identifier, if it has no children). This is stored in the last field of the corresponding
Record in the vector records. This vector itself is stored in the order the lines will
be returned, that is, a preorder traversal. When adding a new Component, it
should be placed after the rightmost descendent of its immediate parent, and this
is located by following the path of last references. (The code would be cleaner
if we were to use Java generics to declare records as a Vector (Record) rather
than a plain Vector of Objects, but we wish to emphasize that the datatype-
genericity discussed in this paper is a different kind of genericity to that provided
in Java 1.5.)

import java.util .\Vector;
public class PrintBuilder implements Builder {

protected class Record {
publicint id;
public int last;
public String line;
public String indent;
public Record (int id, int last,
String line, String indent){
this.id = id;
this.last = last;
this.line = line;
this.indent = indent;
¥
¥

protected Vector records = new Vector ();

Datatype-Generic Programming

protected Record recordAt (int i){
return (Record) records.elementAt (i);
}
protected int find (int id, int start){
while (start < records.size () &&
recordAt (start).id ! =id)
start++;
if (start < records.size ())
return start;
else
return — 1;
}

protected int nextld = 0;
protected SpellCorrector ¢ = new SpellCorrector ();
public int addParagraph (String body, int pid)
throws InvalidBuilderld {
return addComponent (c.correct (body), pid);

¥
public int addSection (String title, int pid)
throws InvalidBuilderld {
return addComponent (title, pid);

}
public String [] getProduct (){
String [] ss = new String [records.size ()];
for (int i = 0;i < ss.length; i++)
ss [i] = recordAt (i).indent + recordAt (i).line;
return ss;

}
protected int addComponent (String s, int pld)
throws InvalidBuilderld {
if (pld < 0){
if (records.isEmpty ()){
records.addElement (new Record
(nextld, nextld,s,""));
return nextld++;
}
else
throw new InvalidBuilderld
("Duplicate root");
}else {
int x = find (pld, 0);
Record r = recordAt (x);
String indent = r.indent;
if (x==—1){

69

70 J. Gibbons

throw new InvalidBuilderld

("Non-existent parent");
}else {

inty =Xx;

while (r.id ! =r.last){
y =X;
x = find (r.last,x);
r = recordAt (x);

}

records.insertElementAt (new Record
(nextld, nextld, s, indent +" ") x 4 1);

recordAt (y).last = nextld;

return nextld++;

7.15 Main

public abstract class Main{
public static void build (Builder b){
try{
int rootld = b.addSection ("Doc", —1);
int sectld = b.addSection ("Sec 1", rootld);

int subsld = b.addSection ("Subsec 1.1", sectld);
int id = b.addParagraph ("Para 1.1.1" subsld);
id = b.addParagraph ("Para 1.1.2" subsld);
subsld = b.addSection ("Subsec 1.2" sectld);

id = b.addParagraph ("Para 1.2.1",subsld);

id = b.addParagraph ("Para 1.2.2",subsld);
sectld = b.addSection ("Sec 2", rootld);

subsld = b.addSection ("Subsec 2.1",sectld);

id = b.addParagraph ("Para 2.1.1" subsld);

id = b.addParagraph ("Para 2.1.2",subsld);
subsld = b.addSection ("Subsec 2.2" sectld);

id = b.addParagraph ("Para 2.2.1",subsld);

id = b.addParagraph ("Para 2.2.2", subsld);

tcatch (InvalidBuilderld e){
System.out.println ("Exception: " +€);

}

}

public static void main (String [] args){
String [] lines;

Datatype-Generic Programming

if (false){
ComponentBuilder b = new ComponentBuilder ();
build (b);
Component root = b.getProduct ();
root.getlterator ().iterate (new SpellCorrector ());
PrintVisitor pv = new PrintVisitor ();
root.accept (pv);
lines = pv.getResult ();

+else{
PrintBuilder b = new PrintBuilder ();
build (b);
lines = b.getProduct ();

}

for (int i = 0;i < lines.length;i++)
System.out.printin (lines [i]);

71

Comparing Approaches to Generic
Programming in Haskell

Ralf Hinze', Johan Jeuring?, and Andres Loh!

! Institut fiir Informatik ITI, Universitit Bonn
Romerstrafle 164, 53117 Bonn, Germany
{ralf,loeh}@informatik.uni-bonn.de
2 Department of Information and Computing Sciences, Utrecht University
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands
johanj@cs.uu.nl

Abstract. The last decade has seen a number of approaches to data-
type-generic programming: PolyP, Functorial ML, ‘Scrap Your Boiler-
plate’, Generic Haskell, ‘Generics for the Masses’, and so on. The
approaches vary in sophistication and target audience: some propose full-
blown programming languages, some suggest libraries, some can be seen
as categorical programming methods. In these lecture notes we compare
the various approaches to datatype-generic programming in Haskell. We
introduce each approach by means of example, and we evaluate it along
different dimensions (expressivity, ease of use, and so on).

1 Introduction

You just started implementing your third web shop in Haskell, and realize that a
lot of the code you have to write is similar to the code for the previous web shops.
Only the data types have changed. Unfortunately, this implies that all reporting,
editing, storing and loading in the database functionality, and probably a lot
more, has to be changed. You've heard about generic programming, a technique
which can be used to automatically generate programs depending on types. But
searching on the web gives you at least eight approaches to solve your problem:
DrIFT, PolyP, Generic Haskell, Derivable Type Classes, Template Haskell, Scrap
Your Boilerplate, Generics for the Masses, Strafunski, and so on. How do you
choose?

In these lecture notes we give arguments as to why you would choose a par-
ticular approach to generic programming in Haskell to solve your generic pro-
gramming problem. We compare different approaches to generic programming
along different lines, such as for example:

— Can you use generic programs on all types definable in the programming
language?

— Are generic programs compiled or interpreted?

— Can you extend a generic program in a special way for a particular data

type?

R. Backhouse et al. (Eds.): Datatype-Generic Programming 2006, LNCS 4719, pp. 72, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Comparing Approaches to Generic Programming in Haskell 73

Before we compare the various approaches to generic programming we first dis-
cuss in detail the criteria on which the comparison is based.

‘Generic’ is an over-used adjective in computing science in general, and in
programming languages in particular. Ada has generic packages, Java has gener-
ics, Eiffel has generic classes, and so on. Usually, the adjective ‘generic’ is used
to indicate that a concept allows abstractions over a larger class of entities than
was previously possible. However, broadly speaking most uses of ‘generic’ refer
to some form of parametric polymorphism, ad-hoc polymorphism, and/or inher-
itance. For a nice comparison of the different incarnations of generic concepts
in different programming languages, see Garcia et al. [23]. Already in the 1970s
this was an active area of research [S9IGGI20].

In the context of these lecture notes, ‘generic programming’ means a form of
programming in which a function takes a type as argument, and its behavior de-
pends upon the structure of this type. The type argument is the type of values to
which the function is applied, or the type of the values returned by the function,
or the type of values that are used internally in the function. Backhouse and
Gibbons [24IT0I25] call this kind of generic programming datatype-generic pro-
gramming. A typical example is the equality function, where a type argument t
dictates the form of the code that performs the equality test on two values of
type t. In the past we have used the term polytypic [48] instead of ‘generic’,
which is less confusing and describes the concept a bit more accurately. How-
ever, the term hasn’t been picked up by other people working on conceptually
the same topic, and maybe it sounds a bit off-putting.

The first programming languages with facilities for datatype-generic program-
ming, beyond generating the definition of equality on user-defined data types,
were Charity [I8], and the lazy, higher-order, functional programming language
Haskell [86]. Since then Haskell has been the most popular testbed for generic
programming language extensions or libraries. Here is an incomplete list of ap-
proaches to generic programming in Haskell or based upon Haskell:

— Generic Haskell [BIB4ITTI73].

DrIFT [99].

— PolyP [48IR1].

Derivable Type Classes [41].

Lightweight Generics and Dynamics [T5].

— Scrap Your Boilerplate [6IJ64J6244/43].

Generics for the Masses [35184].

— Clean [32]. (Clean is not Haskell, but it is sufficiently close to be listed here.)
— Using Template Haskell for generic programming [32].
— Strafunski [65].

— Generic Programming, Now! [42]

Although Haskell has been the most popular testbed for generic programming
extensions, many non-Haskell approaches to generic programming have been
designed:

74 R. Hinze, J. Jeuring, and A. Loh

— Charity [I8].

~ ML [[222).

— Intensional type analysis [S0/T9196].

— Extensional type analysis [21].

— Functorial ML [56/7], the Constructor Calculus [53], the Pattern Calcu-
lus [54055], FISh [52].

— Dependently-typed generic programming [6I11].

— Type-directed programming in Java [98].

— Adaptive Object-Oriented Programming [69].

— Maude [I7].

We have tried to be as complete as possible, but certainly this list is not
exhaustive.

In these lecture notes we compare most of the approaches to generic pro-
gramming in Haskell or based upon Haskell. We do not include Strafunski and
Generic Programming, Now! in our comparison. Strafunski is rather similar to
Scrap Your Boilerplate, and Generic Programming, Now! is an advanced variant
of the lightweight approaches we will discuss. Besides that, a paper [42] about
the Generic Programming, Now! approach is included in these lecture notes, and
itself contains a comparison to other approaches to generic programming. In fu-
ture work we hope to also compare approaches to generic programming in other
programming languages.

Types play a fundamental role in generic programming. In an untyped or
dynamically typed language, it is possible to define functions that adapt to
many data structures, and one could therefore argue that it is much easier to do
generic programming in these languages. We strongly disagree: since generic pro-
gramming is fundamentally about programming with types, simulating generic
programming in an untyped language is difficult, since the concept of types and
the accompanying checks and guidance are missing. Generic programs are often
complex, and feedback from the type system is invaluable in their construction.
This difficulty can also be observed in our treatment of DrIFT and Template
Haskell, both approaches with only limited support from the type system.

We introduce each approach to generic programming by means of a number
of, more or less, canonical examples. This set of examples has been obtained by
collecting the generic functions defined in almost twenty papers introducing the
various approaches to generic programming. Almost all of these papers contain
at least one function from the following list:

— encode, a function that encodes a value of any type as a list of bits. The
function encode is a simple recursive function which ‘destructs’ a value of a
data type into a list of bits.

— decode, the inverse of encode, is a function which builds a value of a data
type from a list of bits.

— eq, a function that takes two values, and compares them for equality.

— map, a generalization of the standard map function on lists. On a parame-
trized data type, such as lists, function map takes a function argument and a
value of the data type, and applies the function argument to all parametric

Comparing Approaches to Generic Programming in Haskell 75

values inside the value argument. The function map is only useful when
applied to type constructors, i.e., parametrized data types such as lists or
trees. In particular, on types of kind x it is the identity function.

— show, a function that shows or pretty-prints a value of a data type.

— update, a function that takes a value of a data type representing the struc-
ture of a company, and updates the salaries that appear in this value. The
characteristic feature of this example is that update is only interested in val-
ues of a very small part of a possibly very large type. It is generic in the
sense that it can be applied to a value of any data type, but it only updates
salaries, and ignores all other information in a value of a data type.

The above functions all exhibit different characteristics, which we use to show
differences between approaches to generic programming. We do not define all of
these functions for each approach, in particular not for approaches that are very
similar, but we use these examples to highlight salient points. We then investigate
a number of properties for each approach. Examples of these properties are:
whether it is possible to define a generic function on any data type that can be
defined in the programming language (full reflexivity), whether the programming
language is type safe, whether generic functions satisfy desirable properties, and
so on. Sometimes we use examples beyond the above functions to better highlight
specifics and peculiarities of a certain approach.

These notes are organized as follows. In Section 2l we discuss why generic pro-
gramming matters by means of a couple of representative examples. We use these
examples in Section @] to compare the various approaches to generic program-
ming by means of the criteria introduced and discussed in Section Bl Section
concludes.

2 Why Generic Programming Matters

Software development often consists of designing a data type, to which func-
tionality is added. Some functionality is data type specific, other functionality is
defined on almost all data types, and only depends on the type structure of the
data type. Examples of generic functionality defined on almost all data types are
storing a value in a database, editing a value, comparing two values for equality,
and pretty-printing a value. A function that works on many data types is called
a generic function. Applications of generic programming can be found not just
in the rather small programming examples mentioned, but also in:

— XML tools such as XML compressors [37], and type-safe XML data binding
tools [7I63];

— automatic testing [60];

— constructing ‘boilerplate’ code that traverses a value of a rich set of mutually-
recursive data types, applying real functionality at a small portion of the data

type [6II7T162];

76 R. Hinze, J. Jeuring, and A. Loh

— structure editors such as XML editors [29], and generic graphical user inter-
faces [1J;

— typed middleware for distributed systems, such as CORBA [85];

— data-conversion tools [50] which for example store a data type value in a
database [29], or output it as XML, or in a binary format [94].

Change is endemic to any large software system. Business, technology, and
organization frequently change during the life cycle of a software system. How-
ever, changing a large software system is difficult: localizing the code that is
responsible for a particular part of the functionality of a system, changing it,
and ensuring that the change does not lead to inconsistencies in other parts of
the system or in the architecture or documentation is usually a challenging task.
Software evolution is a fact of life in the software-development industry [67J68I87].

If a data type changes, or a new data type is added to a piece of software,
a generic program automatically adapts to the changed or new data type. An
example is a generic program for calculating the total amount of salaries paid
by an organization. If the structure of the organization changes, for example by
removing or adding an organizational layer, the generic program still calculates
the total amount of salaries paid. Since a generic program automatically adapts
to changes of data types, a programmer only has to program ‘the exception’.
Generic programming has the potential to solve at least an important part of
the software-evolution problem [58].

In the rest of this section we show a number of examples of generic programs.
We write the generic programs in Generic Haskell [3T38)70]. Generic Haskell is
an extension of Haskell that supports generic programming. Any of the other
approaches to generic programming could have been chosen for the following ex-
position. We choose Generic Haskell simply because we have to start somewhere,
and because we are responsible for the development of Generic Haskell. We use
the most recent version of Generic Haskell, known as Dependency-style Generic
Haskell [7TI70]. Dependencies both simplify and increase the expressiveness of
generic programming. In Section Fl we show how these programs are written in
other approaches to generic programming.

2.1 Data Types in Haskell

The functional programming language Haskell 98 provides an elegant and com-
pact notation for declaring data types. In general, a data type introduces a
number of constructors, where each constructor takes a number of arguments.
Here are two example data types:

data CharList = Nil | Cons Char CharList
data Tree = Empty | Leaf Int | Bin Tree Char Tree.

A character list, a value of type CharList, is often called a string. It is either empty,
denoted by the constructor Nil, or it is a character ¢ followed by the remainder
of the character list cs, denoted Cons ¢ c¢s, where Cons is the constructor. A
tree, a value of type Tree, is empty, a leaf containing an integer, or a binary node
containing two subtrees and a character.

Comparing Approaches to Generic Programming in Haskell 7

These example types are of kind %, meaning that they do not take any type
arguments. We will say a bit more about kinds in Section Bl A kind can be
seen as the ‘type of a type’. The following type takes an argument; it is obtained
by abstracting Char out of the CharList data type above:

data List a = Nil | Cons a (List a).

Here List is a type constructor, which, when given a type a, constructs the type
List a. The type constructor List has the functional kind x — . The list data
type is predefined in Haskell: the type List a is written [a], the expressions Nil
and Cons z xs are written [| and x : xs, respectively. A type can take more than
one argument. If we abstract from the types Char and Int in the type Tree, we
obtain the type GTree defined by:

data GTree a b = GEmpty | GLeaf a | GBin (GTree a b) b (GTree a b).

The type constructor GTree takes two type arguments, both of kind %, and hence
has kind x — * — *.

Arguments of type constructors need not be of kind x. Consider the data type
of Rose trees, defined by:

data Rose a = Node a [Rose a].

A Rose tree is a Node containing an element of type a, and a list of child trees.
Just like List, Rose has kind x — . If we abstract from the list type in Rose, we
obtain the data type GRose defined by:

data GRose f a = GNode a (f (GRose f a)).

Here the type argument f has kind x — *, just like the List type constructor,
and it follows that GRose has kind (x — x) — * — x. We call such a kind that
takes a kind constructor as argument a higher-order kind. The other kinds are
called first-order kinds.

All the examples of data types we have given until now are examples of so-
called regular data types: a recursive, parametrized type whose recursive defin-
ition does not involve a change of the type parameter(s). Non-regular or nested
types [12] are practically important since they can capture data-structural in-
variants in a way that regular data types cannot. For instance, the following
data-type declaration defines a nested data type: the type of perfectly-balanced,
binary leaf trees [32] — perfect trees for short.

data Perfect a = ZeroP a | SuccP (Perfect (Fork a))
data Forka = Forkaa

This equation can be seen as a bottom-up definition of perfect trees: a perfect
tree is either a singleton tree or a perfect tree that contains pairs of elements.
Here is a perfect tree of type Perfect Int:

78 R. Hinze, J. Jeuring, and A. Loh
SuccP (SuccP (SuccP (ZeroP (Fork (Fork (Fork 2 3)
Fork 57))
Fork 11 13)
Fork 17 19)))))).

(Fork

NN N

Note that the height of the perfect tree is encoded in the prefix of SuccP and
ZeroP constructors.

2.2 Structure-Representation Types

To apply functions generically to all data types, we view data types in a uniform
manner: except for basic predefined types such as Float, 10, and —, every Haskell
data type can be viewed as a labeled sum of possibly labeled products. This
encoding is based on the following data types:

dataa:+:b =1Inla|Inrb
dataa:*x:b =a:x:b
data Unit = Unit

data Cona = Con a
data Label a = Label a.

The choice between Nil and Cons, for example, is encoded as a sum using the
type :+: (nested to the right if there are more than two constructors). The con-
structors of a data type are encoded as sum labels, marked by the type Con.
While the representation types are generated, the compiler tags each occurrence
of Con with an abstract value of type ConDescr describing the original construc-
tor. The exact details of how constructors are represented are omitted [3870].
Record names are encoded as product labels, represented by a value of the type
Label, which contains a value of type LabelDescr. Arguments such as the a and
List a of the Cons are encoded as products using the type :*: (nested to the right
if there are more than two arguments). In the case of Nil, an empty product,
denoted by Unit, is used. The arguments of the constructors are not translated.
Finally, abstract types and primitive types such as Char are not encoded, but
left as they are.
Now we can encode CharList, Tree, and List as

type CharList® = Con Unit :+: Con (Char :*: CharList)
type Tree® = Con Unit :+: Con Int :+: Con (Tree :*: (Char :*: Tree))
type List” a = Con Unit :+: Con (a :*: (List a)).

These representations are called structure-representation types. A structure-
representation type represents the top-level structure of a data type. A type
t and its structure-representation type t° are isomorphic. (Strictly speaking this
is not true, because the two types may be distinguished using (partially) unde-
fined values.) Here and in the rest of the paper ‘isomorphism’ should be read
as isomorphic modulo undefined values. The isomorphism between a type and its

Comparing Approaches to Generic Programming in Haskell 79

structure-representation type is witnessed by a so-called embedding-projection
pair: a value convy :: t < t° of the data type

dataa < b= EP{from:a—b,to::b— a}.

For example, for the List data type we have that conviiss = EP from iy toList,
where from|,, and topi are defined by

from| :: List a — List® a
from| . Nil = Inl (Con Unit)
fromig (Cons a as) = Inr (Con (a :*: as))
toList :: List® a — List a
toList (Inl (Con Unit)) = Nil

totist (Inr (Con (a :x: as))) = Cons a as.

The Generic Haskell compiler generates the translation of a type to its structure-
representation type, together with the corresponding embedding-projection pair.
More details about the correspondence between these and Haskell types can be
found elsewhere [34].

A generic program is defined by induction on the structure of structure-
representation types. Whenever a generic program is applied to a user-defined
data type, the Generic Haskell compiler takes care of the mapping between the
user-defined data type and its corresponding structure-representation type. Fur-
thermore, a generic program may also be defined directly on a user-defined data
type, in which case this definition takes precedence over the automatically gen-
erated definitions. A definition of a generic function on a user-defined data type
is called a default case. To develop a generic function, it is best to consider first
a number of its instances for specific data types.

2.3 Encoding and Decoding

A classic application area of generic programming is parsing and unparsing, i.e.,
reading values of different types from some universal representation, or writ-
ing values to that universal representation. The universal representation can be
aimed at being human-readable (such as the result of Haskell’s show function);
or it can be intended for data exchange, such as XML. Other applications include
encryption, transformation, or storage.

In this section we treat a very simple case of compression, by defining functions
that can write to and read from a sequence of bits. A bit is defined by the
following data-type declaration:

data Bit= O | I.
Here, the names O and I are used as constructors.

Function encode on CharList. To define encode on the data type CharList, we
assume that there exists a function encodeChar :: Char — [Bit], which takes a

80 R. Hinze, J. Jeuring, and A. Loh

character and returns a list of bits representing that character. We assume that
encodeChar returns a list of 8 bits, corresponding to the ASCII code of the
character. A value of type CharList is now encoded as follows:

encode CharList :: CharList — [Bit]
encodeCharList Nil =[0]
encodeCharList (Cons ¢ ¢s) = I : encodeChar ¢ H encodeCharList cs.

For example, applying encodeCharList to the string "Bonn" defined as a CharList
by bonn = Cons *B? (Cons >0’ (Cons n’ (Cons ’n’ Nil))) gives

ComparingGP) encodeCharList bonn
[1,0,1,0,0,0,0,1,0,1,0,1,1,0,1,1,1,1,1
,0,1,1,0,1,1,1,0,1,0,1,1,0,1,1,1,0,O].

Note that the type of the value that is encoded is not stored. This implies that
when decoding, we have to know the type of the value being decoded.

Function encode on Tree. To define encode on the data type Tree, we assume
there exists, besides a function encodeChar, a function encodelnt :: Int — [Bit],
which takes an integer and returns a list of bits representing that integer. Func-
tion encodelnt should be defined such that the resulting list of bits can be un-
ambiguously decoded back to an integer again. A value of type Tree can then be
encoded as follows:

encodeTree 2 Tree — [Bit]
encodeTree Empty =[0]
encodeTree (Leaf i) = [I, O] H encodelnt i

encodeTree (Bin lcr) = [I,1]
+H encodeTree [
+H encodeChar c
+H encodeTree r.

The Empty constructor of the Tree data type is encoded with a single bit, and
the other two constructors are encoded using a sequence of two bits.

Function encode on List a. The data type CharList is an instance of the data type
List a, where a is Char. How do we define an encoding function on the data type
List a? For character lists, we assumed the existence of an encoding function for
characters. Here we take the same approach: to encode a value of type List a, we
assume that we have a function for encoding values of type a. Abstracting from
encodeChar in the definition of encodeCharList we obtain:

encodeList :: (a — [Bit]) — List a — [Bit]
encodeList encodeA Nil = (0]
encodeList encodeA (Cons x xs) = I : encodeA ©

H encodeList encodeA xs.

Comparing Approaches to Generic Programming in Haskell 81

Generic encode. The encoding functions on CharList, Tree and List a follow
the same pattern: encode the choice made for the top level constructors, and
concatenate the encoding of the children of the constructor. We can capture this
common pattern in a single generic definition by defining the encoding function
by induction on the structure of data types. This means that we define encode
on sums (:+:), on products (:*:), and on base types such as Unit, Int and Char,
as well as on the sum labels (Con) and the product labels (Label).

The only place where there is a choice between different constructors is in
the :+: type. Here, the value can be either an Inl or an Inr. If we have to
encode a value of type Unit, it can only be Unit, so we need no bits to encode
that knowledge. Similarly, for a product we know that the value is the first
component followed by the second — we need no extra bits except the encodings
of the components.

In Generic Haskell, the generic encode function is rendered as follows:

encode{a :: x|} i (encode{lal}) = a — [Bit]
encode{Unit[} Unit =]

encode{]Int[} i = encodelnt i

encode{ Charl} c = encodeChar c

encode{a +: B} (Inlz) = O:encode{alt =

encode{a :+: B} (Inry) =1 :encode{S]} y

encode{a *: B} (w1 *%: 22) = encode{alt 7 H encode{|B[} z2
encode{Label | af} (Label a) = encode{af} a

encode{Con ¢ aff (Con a) = encode{af a.

There are a couple of things to note about generic function definitions:

— The function encode{jal} is a type-indexed function. The type argument ap-
pears in between special parentheses {, [}. An instance of encode is obtained
by applying encode to a type. For example, encode{|CharList[} is the instance
of the generic function encode on the data type CharList. This instance is
semantically the same as the definition of encodeCharList.

— The constraint encode{a]} that appears in the type of encode says that encode
depends on itself. A generic function f depends on a generic function g if
there is an ‘arm’ (or branch) in the definition of f, for example the arm
for f{a +: B[} that uses g on a variable in the type argument, for example
g{laf}. If a generic function depends on itself it is defined by induction over
the type structure.

— The type of encode is given for a type a of kind . This does not mean
that encode can only be applied to types of kind *; it only gives the type
information for types of kind . The type of function encode on types with
kinds other than x is derived automatically from this base type. In partic-
ular, encode{|List[} is translated to a value that has the type (a — [Bit]) —
(List a — [Bit]).

— The Generic Haskell code as given above is a bit prettier than the actual
Generic Haskell code. In the actual Generic Haskell code we use the prefix

82 R. Hinze, J. Jeuring, and A. Loh

type constructor Sum instead of the infix type constructor - :+: -, and simi-
larly Prod instead of - :*: -.

— The constructor case Con has an extra argument ¢, which contains the con-
structor description of the current constructor. Similarly, the label case Label
has an extra argument [that contains a description of the current label. This
is a special type pattern also containing a value, namely a constructor (label)
description. The constructor (label) description can only be accessed in the
Con (Label) case.

The Con and the Label case are useful for generic functions that use the names
of constructors and labels in some way, such as a generic show function. Most
generic functions, however, essentially ignore these arms. In this case, Generic
Haskell allows to omit these arms from the generic function definition.

Generic decode. The inverse of encode recovers a value from a list of bits. This
inverse function is called decode, and is defined in terms of a function decodes,
which takes a list of bits, and returns a list of values that are recovered from an
initial segment of the list of bits. We introduce a type Parser that is used as the
type of function decodes. Furthermore, we assume we have a map function on
this type. The reason we define this example as well, is that we want to show
how to generically build or construct a value of a data type.

type Parser a = [Bit] — [(a, [Bit])]

mapP : (a — b) — Parser a — Parser b
decodes{a :: %[} it (decodes{al}) = Parser a
decodes{Unit[} xzs = [(Unit, zs)]
decodes{Int]} xs = decodesInt xs

decodes{|Char[} zs = decodesChar s
decodes{a +: B} zs = bitCase (mapP Inl (decodes{al}))
(mapP Inr (decodes{f[}))
s
decodes{a *: B} xs = [(y1 *: y2, r2) | (1, 71) < decodes{al} zs
, (y2,12) «— decodes{ B[} 1]

bitCase :: Parser a — Parser a — Parser a
bitCase p q = Abits — case bits of
O:bs —pbs
I:bs — qbs
1 =]

The function is a bit more involved than encode, because it has to deal with
incorrect input, and it has to return the unconsumed part of the input. We
therefore use the standard list-of-successes technique [93], where the input list is
transformed into a list of pairs, containing all possible parses with the associated
unconsumed part of the input. Assuming that the decoding of primitive types
such as Int and Char is unambiguous, the decoding process is not ambiguous,

Comparing Approaches to Generic Programming in Haskell 83

so only lists of zero (indicating failure) and one (indicating success) elements
occur. As with encodeChar, we assume a function decodesChar is obtained from
somewhere.

A value of type Unit is represented using no bits at all, hence it is decoded
without consuming any input. Except for the primitive types such as Char and
Int, the case for :+: is the only place where input is consumed (as it is the only
case where output is produced in encode), and depending on the first bit of the
input, we produce an Inl or an Inr. Decoding fails if we run out of input while
decoding a sum. The product case first decodes the left component, and then
runs decodes for the right component on the rest of the input.

The inverse of encode is now defined by:

decodeda:: %[} :: (decodes{al}) = [Bit] — a
decode{al} bits = case decodes{al} bits of

[(y, (D] =y

— error "decode: no parse'.

Note that although this is a generic function, it is not defined by induction
on the structure of types. Instead, it is defined in terms of another generic
function, decodes. A generic function f that is defined in terms of another generic
function g is called a generic abstraction. Such a generic function does not depend
on itself, but on ¢ instead. Using a generic abstraction, we can thus define a
function that depends on a type argument, but is not defined using cases on
types. A generic abstraction only works on types that have the specified kind
(% in the case of function decode).

For each type t in the domain of both decode and encode, we have that for
any finite and total value z of type t,

(decode{t[} . encode{t]}) x x.

2.4 Equality

The generic equality function takes two arguments instead of a single argument
as encode does. We define the equality function on two of the example data types
given in Section 21l Two character lists are equal if both are empty, or if both
are non-empty, the first elements are equal, and the tails of the lists are equal.

eqCharList :: CharList — CharList — Bool

eqCharList Nil Nil = True
eqCharList (Cons z xs) (Cons y ys) = eqChar z y A eqCharList xs ys
eqCharList = False,

where eqChar is the equality function on characters.

Two trees are equal if both are empty, both are a leaf containing the same
integer, determined by means of function eqlnt, or if both are nodes containing
the same subtrees, in the same order, and the same characters.

84 R. Hinze, J. Jeuring, and A. Loh

eqTree :: Tree — Tree — Bool

eqTree Empty Empty = True

eqTree (Leaf i) (Leaf j) =eqlnt i j

eqTree (Binl cr) (Bin v d w) = eqTree [v A eqChar ¢ d N eqTree r w
eqTree = False

The equality functions on CharList and Tree follow the same pattern: compare the
top level constructors, and, if they are equal, pairwise compare their arguments.
We can capture this common pattern in a single generic definition by defining
the equality function by induction on the structure of data types.

eq{a [} i (eq{al}) = a — a — Bool

eq{|Unit[} = True

eq{|Int} i J =eqlnt i j

eq{|Char} ¢ d = eqChar ¢ d

eqfla+: B} (Inlz) (Inly) = eq{al zy

eq{a :+: B} (Inl z) (Inry) = False

eq{la +: B[t (Inr z) (Inly) = False

cafe) (nr) (1w 3) = eaf) v

eqila *: Bl (z % y) (v % w) = eqflal z v A eq{B} y w
2.5 Map

In category theory, the functorial map is defined as the action of a functor on an
arrow. There is no way to describe functors in Generic Haskell, and neither is
it possible to distinguish argument types in structure-representation types. The
approach we take to defining map in Generic Haskell illustrates the importance
of kinds in generic programming. To understand the definition of the generic
map function, it helps to first study the generic copy function:

copy{a :: %} = (copy{al}) = a—a
copy{Unit} z =z
copy{|Int[t T =z
copy{Char[} =z =z

copy{a :+: B} (Inl) = Inl (copy{af x)
copyf{la :+: B} (Inr x) = Inr (copy{ B[} =)
copy{a =*: B} (z :*: y) = copy{lal z *: copy{Bl v.

Given a value, the copy function produces a copy of that value and is thus a
generic version of the identity function. Note that we have made a choice in the
code above: the definition is written recursively, applying the generic copy deeply
to all parts of a value. We could have simplified the last three lines, removing
the dependency of copy on itself:

copy{a:+: B} z ==
copy{a :*: B} x = x.

Comparing Approaches to Generic Programming in Haskell 85

But retaining the dependency and applying the function recursively has an ad-
vantage: using a so-called local redefinition we can change the behavior of the
function. Function copy has a dependency on itself. This implies that whenever
copy is used on a type of a kind different from *, extra components are needed.
For example, applying copy to the type [a], where the type list has kind x — x,
requires a component of copy on the type a. The copy function on [a] takes a
copy function on the type a as argument, and applies this copy function when-
ever it encounters an a-value. The standard behavior of generic functions with
dependencies is that argument functions are constructed in exactly the same
way as the instance of the generic function itself. So the copy function on [Char]
would be the instance of the generic copy function on lists, taking the instance
of the generic copy function on Char as argument. Local redefinition allows us
to adapt the standard behavior. As an example, we can increase all elements of
a list by one, using the function

incByl x = let copy{alt = (+1) in copy{[a][} =.

Here we locally redefine copy to behave as the function (41) on values of type «
that appear in a list of type [a]. Obviously, this is only type correct if a equals
Int (or, more generally, is an instance of the Num class). Note that incByl is
something that would normally be written as an application of map:

incByl © = map (+1) z.

If we compare map with the locally redefined version of copy, then two differences
spring to mind. First, the function map can only be used on lists, whereas copy
can be used on other data types as well. Second, map has a more liberal type.
If we define

map' f = let copy{laf = f in copy{[]f},

then we can observe that map’, compared to map has a more restricted type:

The function passed to map may change the type of its argument; the function
passed to map’ preserves the argument type.

Inspired by this deficiency, we can ask ourselves if it is possible to also pass
a function of type a — b while locally redefining copy. The function copy{|[a][}
has the qualified type

copy{|[a]l; :: (copy{lalt :a — a) = [a] — [a],
but we are now going to generalize this type to something like

map{|[a][} :: (map{al} :a — b) = [a] — [b],

86 R. Hinze, J. Jeuring, and A. Loh

thereby renaming function copy to map (but using exactly the same definition).
For this to work, map needs a different type signature, in which the b is also
bound:

map{a %, b x[} 2 (map{a,b[}) = a — b.

The type of the map function is now parametrized over two type variables, and
so is the dependency. The arms in the definition of map are still parametrized by
a single type (Generic Haskell does not allow more than one type argument in
definitions of generic functions). Function map is always called with a single type
argument, which is the type argument that is used to induct over. When map is
used at a constant type, both variables a and b are instantiated to the same con-
stant type. Only when locally redefining the function for a dependency variable,
the additional flexibility is available. Figure [l shows some types (with explicit
kind annotations for the type variables) for applications of map to specific type
arguments.

map{ Tree :: x|} :: Tree — Tree
map{|List (a:: %) 2 [}
V(a1 ::) (a2 %) . (map{al} :: a1 — az) = List a; — List a»
map{|GTree (a:: %) (b:x) %}
V(a1) (a2 i %) (br i) (b2 i %) . (map{al} :: a1 — a2, map{b]} :: by — by) =
GTree a1 a2 — GTree by b>
map{|GRose (f :: x — %) (a: %) = [} =
V(fiox— %) (faix — %) (ag %) (a2 %)
(map{f (c:: %)} = V(c1 %) (c2 %) . (map{c} ic1 =) =fica —Hh o
,map{al} :: a1 — a2
) = GRose f1 a1 — GRose f2 a>.

Fig. 1. Example types for generic applications of map to type arguments of different
forms

For example, assume the (data) types Pair and Either are defined by:

type Pairab = (a,b)
data Either a b = Left a | Right b.

Then the expressions

map{[]l} (+1) [1,2,3,4,5]
map{Pair}} (x2) ("y"+H) (21,"es")
map{ Either} not id (Left True)

evaluate to [2,3,4,5,6], (42, "yes"), and Left False, respectively.

Comparing Approaches to Generic Programming in Haskell 87

2.6 Show

The function show shows a value of an arbitrary data type. In Haskell, the
definition of show can be derived for most data types. In this subsection we
explain how to define show as a generic function in Generic Haskell. We do not
treat field labels, so our implementation is a simplification of Haskell’s show;
the complete definition of show can be found in Generic Haskell’s library. The
function show is an example of a function that uses the constructor descriptor
in the Con case. We define show in terms of the function showP, a slightly
generalized variant of Haskell’s show that takes an additional argument of type
String — String. This parameter is used internally to place parentheses around
a fragment of the result when needed.
showP{a :: x[} :: (showP{al}) = (String — String) — a — String
showP{Unit} p Unit ="
showP{oa:+: B} p (Inl z) = showP{af} pz
showP{o :+: B} p (Inr) = showP{B} px
showP{la :*: B} p (z1 % 22) = showP{af} p 21 # " " H showP{[} p a2
showP{Con ¢ af} p (Con z) =let parens z ="("Hz H")"
body = showP{al parens
in if null body
then conName c
else p (conName ¢ H " " +H body)
showP{|[a][} p 8 = let body = (concat
.intersperse ", "
.map (showP{af} id)
) s
in "["+ body H# "1"

The type Unit represents a constructor with no fields. In such a situation, the
constructor name alone is the representation, and it is generated from the Con
case, so we do not need to produce any output here. We just descend through the
sum structure; again, no output is produced because the constructor names are
produced in the Con case. A product concatenates fields of a single constructor;
we therefore show both components, and separate them from each other by a
space.

Most of the work is done in the arm for Con. We show the body of the
constructor, using parentheses where necessary. The body is empty if and only if
there are no fields for this constructor. In this case, we only return the name of
the constructor. Here we make use of the function conName on the constructor
descriptor ¢ to obtain that name. Otherwise, we connect the constructor name
and the output of the body with a space, and possibly surround the result with
parentheses.

The last case is for lists and implements Haskell’s list syntax, with brackets
and commas, using the function intersperse from Haskell’s List module.

In addition to the cases above, we need cases for abstract primitive types such
as Char, Int, or Float that implement the operation in some primitive way.

88 R. Hinze, J. Jeuring, and A. Loh

The function show is defined in terms of showP via generic abstraction, instan-
tiating the first parameter to the identity function, because outer parentheses
are not required.

show{a:: x[} :: (showP{al}) = a — String
show{al} = showP{al} id

The definition of a generic read function that parses the generic string repre-
sentation of a value is also possible using the Con case, and only slightly more
involved because we have to consider partial consumption of the input string
and possible failure.

2.7 Update Salaries

Adapting from Lammel and Peyton Jones [61], we use the following data types
to represent the organizational structure of a company.

data Company = C [Dept]

data Dept = D Name Manager [SubUnit]
data SubUnit = PU Employee | DU Dept
data Employee = F Person Salary

data Person = P Name Address
data Salary = S Float

type Manager = Employee

type Name = String

type Address = String

We wish to update a Company value, which involves giving every Person a 15%
pay rise. To do so requires visiting the entire tree and modifying every occurrence
of Salary. The implementation requires pretty standard “boilerplate” code which
traverses the data type, until it finds Salary, where it performs the appropriate
update — itself one line of code — before reconstructing the result.

In Generic Haskell writing this function requires but a few lines. The code is
based on the generic map function. The code to perform the updating is given
by the following three lines, the first of which is the mandatory type signature,
the second states that the function is based on map, and the third performs the
update of the salary. The extends construct denotes that the cases of map are
copied into update. These are the default cases described by Clarke and Loh [16].

updateda :: x|} :: (update{al}) = a — a
update extends map
update{Salary[} (S s) =S (s* (1 +0.15))

Semantically, this is the same function as

update{Unit}} = =z
updated|Int[} x x
update{Char[} z =z

Comparing Approaches to Generic Programming in Haskell 89

update{a :+: B} (Inl) = Inl (update{al})
update{a :+: B} (Inr x) = Inr (update{S[} =)
update{a :*: Bf} (z :*: y) = update{al} © *: update{B]} y
update{Salary} (S's) =8 (s=*(1+40.15)).

The extends construct allows us to abbreviate such small variations of generic
functions.

3 Criteria for Comparison

This section discusses the criteria we use for comparing approaches to generic
programming in Haskell. This is a subset of the criteria we would use for com-
paring approaches to generic programming in any programming language. To-
gether, these criteria can be viewed as a characterization of generic program-
ming. Adding generic programming capabilities to a programming language is a
programming-language design problem. Many of the criteria we give are related
to or derived from programming-language design concepts. We don’t think that
all criteria are equally important: some criteria discuss whether or not some
functions can be defined or used on particular data types, whereas other criteria
discuss more cosmetic aspects. We illustrate the criteria with an evaluation of
Generic Haskell.

3.1 Structure in Programming Languages

Ignoring modules, many modern programming languages have a two-level struc-
ture. The bottom level, where the computations take place, consists of values.
The top level imposes structure on the value level, and is inhabited by types.
On top of this, Haskell adds a level that imposes structure on the type level,
namely kinds. Finally, in some dependently-typed programming languages there
is a possibly infinite hierarchy of levels, where level n 4+ 1 imposes structure on
elements of level n [90].

In ordinary programming we routinely define values that depend on values,
that is, functions, and types that depend on types, that is, type constructors.
However, we can also imagine having dependencies between adjacent levels. For
instance, a type might depend on a value or a type might depend on a kind. The
following table lists the possible combinations:

kinds depending on kinds parametric and kind-indexed kinds
kinds depending on types dependent kinds

types depending on kinds polymorphic and kind-indexed types
types depending on types parametric and type-indexed types
types depending on values dependent types

values depending on types polymorphic and type-indexed functions
values depending on values ordinary functions

90 R. Hinze, J. Jeuring, and A. Loh

There even exist dependencies between non-adjacent levels: properties of generic
functions are values that depend on kinds [33I51]. However, we will not further
discuss these non-adjacent dependencies in these notes.

If a higher level depends on a lower level we have so-called dependent types or
dependent kinds. Programming languages with dependent types are the subject
of current research [TG9I90IT00]. Generic programming is concerned with the
opposite direction, where a lower level depends on the same or a higher level.
For instance, if a value depends on a type we either have a polymorphic or a type-
indexed function. In both cases the function takes a type as an argument. What
is the difference between the two? A polymorphic function is a function that
happens to be insensitive to what type the values in a data type are. Take, for
example, the length function that calculates the length of a list. Since it does not
have to inspect the elements of an argument list, it has type Va. List a — Int. By
contrast, in a type-indexed function the type argument guides the computation
which is performed on the value arguments.

Not only values may depend on types, but also types. For example, the type
constructor List depends on a type argument. We can make a similar distinction
as on the value level. A parametric type, such as List, does not inspect its type
argument. A type-indexed type [39], on the other hand, is defined by induction
on the structure of its type argument. An example of a type-indexed data type
is the zipper data type introduced by Huet [46]. Given a data type t, the zipper
data type corresponding to t can be defined by induction on the data type t.
Finally, we can play the same game on the level of kinds. The following table
summarizes the interesting cases.

kinds defined by induction on the structure of kinds kind-indexed kinds
kinds defined by induction on the structure of types —

types defined by induction on the structure of kinds kind-indexed types
types defined by induction on the structure of types type-indexed types
types defined by induction on the structure of values —

values defined by induction on the structure of types type-indexed values
values defined by induction on the structure of values —

For each of the approaches to generic programming we discuss what can depend
on what.

Structural dependencies. Which concepts may depend on which concepts?

Generic Haskell supports the definition of type-indexed values, as all the ex-
amples in the previous section show. Type arguments appear between special
parentheses {, [}. A type-indexed value has a kind-indexed type, of which the
base case, the case for kind %, has to be supplied by the programmer. The in-
ductive case, the case for kind k — &', cannot be specified, but is automatically
generated by the compiler (as it is determined by the way Generic Haskell spe-
cializes generic functions). Generic abstractions only generate code for functions
on types of the kind specified in the type of the generic abstraction.

Comparing Approaches to Generic Programming in Haskell 91

Generic Haskell also supports the definition of type-indexed types. A type-
indexed type is defined in the same way as a type-indexed function, apart from
the facts that every line in its definition starts with type, and its name starts
with a capital. A type-indexed type has a kind-indexed kind [39).

3.2 The Type Completeness Principle

The Type Completeness Principle [95] says that no programming-language op-
eration should be arbitrarily restricted in the types of its operands, or, equiva-
lently, all programming-language operations should be applicable to all operands
for which they make sense. For example, in Haskell, a function can take an argu-
ment of any type, including a function type, and a tuple may contain a function.
To a large extent, Haskell satisfies the type completeness principle on the value
level. There are exceptions, however. For example, it is not possible to pass a
polymorphic function as argument (some Haskell compilers, such as GHC, do
allow passing polymorphic arguments). Pascal does not satisfy the type com-
pleteness principle, since, for example, procedures cannot be part of composite
values.
The type completeness principle leads to the following criteria.

Full reflexivity. A generic programming language is fully reflexive if a generic
function can be used on any type that is definable in the language.

Generic Haskell is fully reflexive with respect to the types that are definable
in Haskell 98, except for constraints in data-type definitions. So a data type of
the form

data Fq a = Set a = NilSet | ConsSet a (Set a)

is not dealt with correctly. However, constrained data types are a corner case
in Haskell and can easily be simulated using other means. Furthermore, Noguei-
ra [80] shows how to make Generic Haskell work for data types with constraints.

Generic functions cannot be used on existential data types, such as for example

data Foo = Va. MkFoo a (a — Bool).

Although such types are not part of Haskell 98, they are supported by most
compilers and interpreters for Haskell. Furthermore, generic functions cannot be
applied to generalized algebraic data types (GADTS), a recent extension in the
Glasgow Haskell Compiler (GHC), of which the following type Term, representing
typed terms, is an example:

data Term :: x — x where
Lit 2 Int — Term Int
Suce :: Term Int — Term Int
IsZero :: Term Int — Term Bool
If :: Term Bool — Term a — Term a — Term a
Pair ::Terma — Term b — Term (a, b).

92 R. Hinze, J. Jeuring, and A. Loh

Note that the result types of the constructors are restricted for Terms, so that if
we pattern match on a Term Bool, for example, we already know that it cannot be
constructed by means of Lit, Succ or Pair. The structural representation using
sums of products that Generic Haskell uses to process data types uniformly
is not directly applicable to data types containing existential components or
to GADTs. Generic Haskell is thus not fully reflexive with respect to modern
extensions of Haskell.

Type universes. Some generic functions only make sense on a particular set of
data types, or on a subset of all data types. For example, Malcolm [75] defines the
catamorphism only for regular data types of kind x — *. Bird and Paterson [I3]
have shown how to define catamorphisms on nested data types, and using tupling
it is possible to define catamorphisms on mutually recursive types, but we are not
aware of a single definition of a catamorphism that combines these definitions.
Many generic functions, such as show and equality, cannot sensibly be defined on
the type of functions. Is it possible to define generic functions on a particular set
of data types, or on a subset of data types? Can we describe type universes [11]?

Generic Haskell has some facilities to support defining generic functions on
a particular set of data types. If we only want to use a generic function on a
particular set of data types, we can define it for just those data types. This is
roughly equivalent to defining a class and providing instances of the class for the
given data types.

Furthermore, by not giving a case for the function space (or other basic types
for which we do not want to define the generic function), a generic function is
not defined for data types containing function spaces, and it is a static error for
a generic function to be used on a data type containing function spaces.

Finally, Generic Haskell supports so-called generic views [45] on data types,
by means of which we can view the structure of data types in different ways.
Using generic views, we can for example view (a subset of) data types as fixed
points of regular functors, which enables the definition of the catamorphism.

First-class generic functions. Can a generic function take a generic function as
argument? We will also use the term higher-order generic functions for first-class
generic functions. An example where a higher-order generic function might be
useful is in a generic show function that only prints part of its input, depending
on whether or not some property holds of the input.

Generic Haskell does not have first-class generic functions. To a certain ex-
tent first-class generic functions can be mimicked by means of dependencies and
extending existing generic functions, but it is impossible to pass a generic func-
tion as an argument to another (generic) function. The reason for this is that
generic functions in Generic Haskell are translated by means of specialization.
Specialization eliminates the type arguments from the code, and specialized in-
stances are used on the different types. Specialization has the advantage that
types do not appear in the generated code, but the disadvantage that special-
izing higher-order generic programs becomes difficult: it is hard to determine
which translated components are used where.

Comparing Approaches to Generic Programming in Haskell 93

Multiple type arguments. Can a function be generic in more than one type ar-
gument? Induction over multiple types is for example useful when generically
transforming values from one type structure into another type structure [g].

Generic functions in Generic Haskell can be defined by induction on a single
type. It is impossible to induct over multiple types. Note that the type of a
generic function may take multiple type arguments (such as the type of map).

Transforming values from one type structure into another type structure is
the only example we have encountered for which multiple type arguments would
be useful. Usually, transforming one type structure into another can be achieved
by combining two generic functions — one that maps a value into a universal
structure, and another that recovers a value from the universal structure. In-
stances of these functions on for example the data type lists can be implemented
by means of a fold (mapping into a universal structure) and an wunfold (pars-
ing from a universal structure). Compositions of unfolds with folds are so-called
metamorphisms [26]. Since we are not aware of generic metamorphisms, we do
not weigh this aspect heavily in our comparison.

3.3 Well-Typed Expressions do not go Wrong

Well-typed expressions in the Hindley-Milner type system [77] do not go wrong.
Does the same hold for generic functions?

Type system. Do generic functions have types?

In Generic Haskell, generic functions have explicit types. Type-correctness is
only partially checked by the Generic Haskell compiler. Haskell type-checks the
generated code. A type system for Generic Haskell has been given by Hinze [33]
and Loh [70] (an extension of Hinze’s system with several extra features).

Type safety. Is the generic programming language type safe? By this we mean:
is a type-correct generic function translated to a type-correct instance? And is
a compiled program prevented from crashing because a non-existing instance of
a generic function is called?

Generic Haskell is type safe in both aspects.

3.4 Information in Types

What does the type of a generic function reveal about the function? Can we
infer a property of a generic function from its type? Since generic programming
is about programming with types, questions about the type language are par-
ticularly interesting.

The type of a generic function. Do types of generic functions in some way corre-
spond to intuition? A generic function f{af} that has type a — a — Bool is prob-
ably a comparison function. But what does a function of type (Va b. Data a =
f(a—b)—a—fb)— (Va.a —fa) —a— fado (this is a rather powerful

94 R. Hinze, J. Jeuring, and A. Loh

combinator, which we will encounter again in one of the approaches)? This ques-
tion is related to the possibility to infer useful properties, like free theorems [92],
for a generic function from its type [57128].

Generic Haskell’s types of generic functions are relatively straightforward: a
type like

eq{la :: x[} :: (eq{a}}) = a — a — Bool

is close to the type you would expect for the equality function, maybe apart
from the dependency. The type for map:

map{a:: %, b« 2 (map{a,bl}) =a—b

is perhaps a little bit harder to understand, but playing with instances of the
type of map for particular types, in particular for type constructors, probably
helps understanding why this type is the one required by map.

Properties of generic functions. Is the approach based on a theory for generic
functions? Do generic functions satisfy algebraic properties? How easy is it to
reason about generic functions?

In his habilitation thesis [33], Hinze discusses generic programming and generic
proofs in the context of (a ‘core’ version of) Generic Haskell. He shows a number
of properties satisfied by generic functions, and he shows how to reason about
generic functions.

3.5 Integration with the Underlying Programming Language

How well does the generic programming language extension integrate with the
underlying programming language, in our case Haskell?

A type system can be nominal (based on the names of the types), structural
(based on the structure of the types), or a mixture of the two. If a type system
is nominal, it can distinguish types with exactly the same structure, but with
different names. Generic functions are usually defined on a structural represen-
tation of types. Can such a generic function be extended in a non-generic way,
for example for a particular, named, data type? Or even for a particular con-
structor? The general question here is: how does generic programming interact
with the typing system?

A generic program can be used on many data types. But how much work
needs to be done to use a generic function on a new data type? Is it simply a
matter of writing deriving ... in a data-type declaration, or do we also have to
implement the embedding-projection pair for the data type, for example?

Using default cases, a generic function can be extended in a non-generic way
in Generic Haskell. The update function defined in Section 2.7 provides an ex-
ample. Generic functions can even be specialized for particular constructors.
Generic functions can be used on data types with no extra work. Generic Haskell
generates the necessary machinery such as structure-representation types and
embedding-projection pairs behind the scenes.

Comparing Approaches to Generic Programming in Haskell 95

3.6 Tools

Of course, a generic programming language extension is only useful if there exists
an interpreter or compiler that understands the extension. Some ‘lightweight’
approaches to generic programming require no additional language support: the
compiler for the underlying programming language is sufficient. However, most
approaches require tools to be able to use them, and we can ask the following
questions.

Specialization versus interpretation. Is a generic function interpreted at run-time
on data types to which it is applied, or is it specialized at compile-time? The
latter approach allows the optimization of generated code.

Generic Haskell specializes applications of generic functions at compile-time.

Code optimization. How efficient is the code generated for instances of generic
functions? What is the speed of the generated code? Ideally generic programming
does not lead to a performance penalty. For example, in the STL community,
this is a requirement for a generic function [79] (not to be confused with a
datatype-generic function).

Generic Haskell does not optimize away the extra marshaling that is intro-
duced by the compiler for instances of generic functions. This might be an imped-
iment for some applications. There exists a prototype implementation of Generic
Haskell in which the extra marshaling is fused away [91], but the techniques have
not been added to the Generic Haskell compiler releases. The fusion optimiza-
tion techniques in the underlying programming language Haskell are not strong
enough to optimize generated Generic Haskell code.

Separate compilation. Can a generic function that is defined in one module be
used on a data type defined in another module without having to recompile the
module in which the generic function is defined?

Generic Haskell provides separate compilation.

Practical aspects. Does there exist an implementation? Is it maintained? On
multiple platforms? Is it documented? What is the quality of the error messages
given by the tool?

Generic Haskell is available on several platforms: Windows, Linux and Mac-
0OSX, and it should be possible to build Generic Haskell anywhere where GHC
is installed. The latest release is from October, 2006. The distribution comes
with a User Guide, which explains how to install Generic Haskell, how to use
it, and introduces the functions that are in the library of Generic Haskell. The
Generic Haskell compiler reports syntax errors. Type errors, however, are only
reported when the file generated by Generic Haskell is compiled by a Haskell
compiler. Type systems for Generic Haskell have been published [B3I7II70], but
only partially implemented.

96 R. Hinze, J. Jeuring, and A. Loh

3.7 Other Criteria

This section lists some of the criteria that do not fall in the categories discussed
in the previous subsections, or that are irrelevant for comparing the generic
programming approaches in Haskell, but might be relevant for comparing ap-
proaches to generic programming in different programming languages.

Type-language expressiveness of the underlying programming language. If all
values in a programming language have the same type, it is impossible to define
a function the behavior of which depends on a type, and hence it is impossible
to define generic functions. But then, of course, there is no need for defining
generic functions either.

The type languages of programming languages with type systems vary widely.
Flexible and powerful type languages are desirable, but the more expressive a
type language, the harder it becomes to write generic programs. What kind of
data types can be expressed in the type language?

Haskell has a very powerful, flexible, and expressive type language. This make
generic programming in Haskell particularly challenging.

Size matters. The size of a program matters — some people are even paid per
line of code —, and the same holds for a generic program. It is usually easier
to read and maintain a single page of code than many pages of code, although
sometimes extra information, such as type information, properties satisfied by a
program, or test cases for a program, are useful to have. So code size matters,
but not always. Except for some obvious cases, we will not say much about code
size in our comparisons.

Ease of learning. Some programming approaches are easier to learn than oth-
ers. Since there are so many factors to the question how easy it is to learn a
programming language, and since it is hard to quantify, we refrain from mak-
ing statements about this question, other than whether or not the approach to
generic programming is documented. However, it is an important question.

4 Comparing Approaches to Generic Programming

In this section we describe eight different approaches to generic programming in
Haskell. We give a brief introduction to each approach, and evaluate it using the
criteria introduced in the previous section.

We can distinguish three groups of approaches with similar characteristics
among the approaches to generic programming in Haskell.

— Generic Haskell and Clean are programming-language extensions based on
Hinze’s theory of type-indexed functions with kind-indexed types [34].

— DrIFT and implementations of generic programming using Template Haskell
are based on a kind of reflection mechanism.

Comparing Approaches to Generic Programming in Haskell 97

— Derivable Type Classes, Lightweight Generics and Dynamics, Generics for
the Masses, and PolyP2 ([81], the latest version of PolyP [48]) are light-
weight approaches that do not require reflection or programming-language
extensions.

PolyP (in its original version) and Scrap Your Boilerplate are sufficiently different
to not be placed in one of these groups. We evaluate the approaches in the
groups together, since most aspects of the evaluation are the same. Of course, we
already evaluated Generic Haskell in the previous section, so Clean is evaluated
separately.

4.1 Clean

Clean’s generic programming extension [3l2] is based on Hinze’s work on type-
indexed functions with kind-indexed types [34], just like Generic Haskell.

The language of data types in Clean is very similar to that of Haskell, and
the description from Section 2] on how to convert between data types and
their structure-representation types in terms of binary sums of binary products
applies to Clean as well, only that the unit type is called UNIT, the sum type
EITHER, and the product type PAIR. There are special structural markers for
constructors and record field names called CONS and FIELD, and one for objects
called OBJECT.

Clean’s generic functions are integrated with its type-class system. Each
generic function defines a kind-indexed family of type classes, the generic func-
tion itself being the sole method of these classes. Let us look at an example.

Function encode. Here is the code for the generic function encode.

generic encode a :: a — [Bit]

encode{UNIT[} UNIT =]

encoded|Int[} i = encodelnt i
encode{ Charl} c = encodeChar c¢
encode{ EITHER]} enc, ency, (LEFT z) =[O0 : enc,]
encode{EITHER]} enc, ency, (RIGHT y) =[I:ency y]
encode{|PAIR[} enc, ency (PAIR z y) = enc, © H ency y

encode{FIELD[} enc, FIELD) =enc,z
encode{OBJECT]} enc, OBJECT x) = enc,

derive encode Tree

(
E
encode{CONS[} enc, (CONS z) =enc,
(
(

The keyword generic introduces the type signature of a generic function, which
takes the same form as a type signature in Generic Haskell, but without depen-
dencies. Each generic function automatically depends on itself in Clean, and in
the cases for types of higher kinds such as EITHER::x — x — x or CONS::% — %,
additional arguments are passed to the generic function representing the recur-
sive calls. This is very close to Hinze’s theory [34] which states that the type of
encode is based on the kind of the type argument as follows:

98 R. Hinze, J. Jeuring, and A. Loh

encode{a :: &} :: Encode{k]} a
Encode{/*]} a = a — [Bit]
Encode{lk — k'l f =Va:: k. Encode{k]} a — Encode{x']} (f a).

In particular, if we instantiate this type to the kinds x, x — *, and * — x — *,
we get the types of the UNIT, EITHER, CONS cases of the definition of encode,
respectively:

encodeqa :: x|} ::a — [Bit]
encode{|f :: x — %[} :: (a — [Bit]) — (f a — [Bit])
encode{f :: x — % — «[} :: (a — [Bit]) — (b — [Bit]) — (f a b — [Bit]).

The derive statement is an example of how generic behavior must be explicitly
derived for additional data types. If Tree is a type that we want to encode, we
have to request this using a derive statement.

Because generic functions automatically define type classes in Clean, the type
arguments (but not the kind arguments) can usually be inferred automatically.
The function encode can thus be invoked on a tree ¢:: Tree by calling encode{*[} t.

If encode{*[} z is used in another function on a value z :: a, then a class
constraint of the form encode{*[} a arises and is propagated as usual. Other
first-order kinds can be passed to encode, but Clean does not currently support
generic functions on higher-order kinds, maybe because uniqueness annotations
for higher-order kinded (higher-kinded) types are not supported.

Functions decode, eq, map and show. Apart from the already mentioned differ-
ences and a few syntactic differences between Clean and Haskell, many of the
other example functions can be implemented exactly as in Generic Haskell. We
therefore present only map as another example.

generic map ab::a—b

map{UNIT[} T =z
map{Int[} i =1
map{|Charl} c =c
map{ EITHER} map, map, (LEFT z) = LEFT (map,)

(
map{EITHER} map, map, (RIGHT y) = RIGHT (map, y)
map{PAIR[} map, map, (PAIR 1y 15) = PAIR (map, 1) (map, x2)
map{|CONS[} map, (CONS z) = CONS (map,)
map{FIELD} map, (FIELD z) = FIELD (map,)
map{|OBJECT[} map, (OBJECT z) = OBJECT (map, x)

The type of map makes use of two type variables and is equivalent to the Generic
Haskell type (map{la,b]}) = a — b or the kind-indexed type signature

map{a :: &} :: Map{k]} a a
Map{x]} ab=a—b
Map{xk — &'} f g =Va:k (b:: k). Map{[k]} a b — Map{[x']} (f a) (g b).

As before, Clean leaves the dependency of map on itself implicit, but otherwise
uses type signatures similar to Generic Haskell.

Comparing Approaches to Generic Programming in Haskell 99

Function update. Reusing the definition of map to define update is not possible
in Clean, as it supports neither default cases nor higher-order generic functions.
To define update, we have to reimplement the map function plus the special case
for Salary.

Evaluation

Structural dependencies. Clean supports the definition of generic functions in
the style of Generic Haskell. It does not support type-indexed data types.

Full reflexivity. Generic functions in Clean do not work for types with higher-
order kinds, so the generic programming extension of Clean is not fully reflexive.

Type universes. Clean can define generic functions on subsets of data types in
the same way as Generic Haskell, but it does not support default cases or generic
views.

First-class generic functions. Generic functions are treated as kind-indexed fam-
ilies of type classes. Type classes are not first-class, so generic functions are not
first-class either.

Multiple type arguments. Clean allows the definition of classes with multiple
type arguments. All type arguments, however, must be instantiated to the same
type at the call site. Therefore, true multi-argument generic functions are not
supported.

Type system. Generic functions are fully integrated into Clean’s type system, by
mapping each generic function to a family of type classes. The compiler ensures
type-correctness.

Type safety. Clean’s generic programming extension is fully type safe.

The type of a generic function. The type of a generic function is declared using
the generic construct. The types are very similar in nature to those of Generic
Haskell. They lack dependencies, which makes them a bit less expressive, but in
turn a bit easier to understand.

Properties of generic functions. Again, Hinze’s theory is the basis of Clean’s
generic programming extension. Therefore it is possible to state and prove the-
orems following his formalism.

Integration with the underlying programming language. Generic programming is
fully integrated with the Clean language. Only the module StdGeneric must be
imported in order to define new generic functions. To use a generic function g
on a data type t we write derive ¢ t; no type-specific code is needed.

100 R. Hinze, J. Jeuring, and A. Loh

Specialization versus interpretation. Clean uses specialization to compile generic
functions. Specialization is explicit, using the derive construct.

Code optimization. Because Clean uses essentially the same implementation
technique as Generic Haskell, there is a risk that specialized code is inefficient.
There is extensive work on optimizing specialized code for generic functions
generated by Clean [AlJ5], and the resulting code is almost as efficient as hand-
written specialized code. Not all optimization algorithms have been included in
the compiler yet.

Separate compilation. Generic programming is integrated into Clean, and Clean
supports separate compilation.

Practical aspects. Clean is maintained and runs on several platforms. However,
the documentation of generic programming in Clean is lacking. The chapter
in the Clean documentation is missing, and there’s a gap between the syntax
used in papers and the implementation. Furthermore, the error messages of the
Clean compiler with respect to generic functions are not very good. Nevertheless,
generic programming in Clean seems very usable and has been used, for example,
to implement a library for generating test data [60] as well as a GUI library [I].

4.2 PolyP

PolyP [48] is an extension of Haskell with a construct for defining so-called
polytypic programs. There are two versions of PolyP: the original version [4§],
called PolyP1 from now on, is an extension of Haskell that requires a compiler
to compile the special constructs for generic programming. The second version,
PolyP2 [81], is a lightweight approach, with an optional compiler for generating
the necessary code for a data type. In this section we will mainly describe PolyP1,
but we will sometimes use PolyP2 to explain special constructs. If the distinction
is not important, we will use PolyP.

PolyP allows the definition of generic functions on regular data types of kind
* — *. A data type is regular if it does not contain function spaces, and if
the arguments of the data type constructor on the left- and right-hand sides in
its definition are the same. Examples of regular data types are List a, Rose a,
and Fork a. The data types CharList, Tree, and GRose are regular, but have
kind *, *, and (x — %) — * — %, respectively. The data type Perfect a is not
regular: in the right-hand side Perfect is applied to Fork a instead of a. Another
example of a data type that is not regular is the data type Flip defined by
data Flip a b = MkFlip a (Flip b a).

PolyP1 is rather similar to Generic Haskell in that it translates data types to
structure-representation types. The structure-representation types are then used
together with polytypic definitions to generate Haskell code for (applications
of) generic functions. The structure-representation type of a data type d a is
given by

Mu (FunctorOf d) a,

Comparing Approaches to Generic Programming in Haskell 101

where FunctorOf d is a type constructor of kind x — x — * representing the
recursive structure of the data type d, and the data type Mu takes a type con-
structor and a type variable of kind %, and returns the fixed point of the type
constructor:

data Mu fa= Inn (fa (Muf a)).

FunctorOf d is sometimes also called the bifunctor of d. The isomorphism between
a data type and its structure-representation type is witnessed by the functions
inn and out.

inn :: FunctorOf da (da) —da
mn = Inn
out :: da— FunctorOf d a (d a)

out (Inn z) =z

The restriction to regular data types imposed by PolyP is caused by the way the
structure-representation types are built up.

Structure-representation types are expressed in terms of bifunctors. In Po-
lyP2, bifunctors are defined by:

data (g+h)ab =InL(gab)|nR (hab)

data (gxh)ab =gab:*xhab

newtype Parab = ParF {unParF :a}
newtype Recab = RecF {unRecF :b}
newtype (dQg) a b = CompEF{unCompF ::d (gab)}
newtype Constt = ConstF{unConstF ::t}

data Empty = EmptyF.

Binary functors are sums (4, with constructors InL and InR) of products (x,
with constructor :*:) of either the parameter type of kind % (represented by Par,
with constructor ParF and destructor unParF'), the data type itself (represented
by Rec, with constructor RecF and destructor unRecF'), compositions of data
types and bifunctors (represented by @, with constructor CompF and destructor
unCompF'), or constant types (represented by Const t where t may be any of
Float, Int, and so on, with constructor ConstF and destructor unConstF'). An
empty product is represented by the unit type (represented by Empty). For
example, for the data types List a, Rose a, and Fork a, PolyP uses the following
internal representations:

FunctorOf List Empty + Par x Rec
FunctorOf Rose Par x List@Rec
FunctorOf Fork Par * Par.

There is an important difference between this encoding of data types and the
encoding of data types in Generic Haskell. In Generic Haskell the structure types
only represent the top-level structure of a value, whereas in PolyP the encoding
of values is deep: the original data type has disappeared in the encoded structure.

102 R. Hinze, J. Jeuring, and A. Loh

In PolyP1, bifunctors are only used internally to construct structure-represen-
tation types. Furthermore, Empty is called (), and Const is called Con. Bifunctors
can only appear in the type cases of a generic (called polytypic in PolyP) func-
tion. Furthermore, the constructors and destructors are added automatically.

An important recursion combinator in PolyP is the catamorphism [75], which
is defined in PolyLib, the library of PolyP [49]. The catamorphism is a gen-
eralization of Haskell’s foldr to an arbitrary data type. It takes an algebra as
argument, and is defined in terms of a polytypic function fmap2, representing
the action of the bifunctor of the data type on functions. The catamorphism is
intimately tied to the representation of data types as fixed points of bifunctors;
it is impossible to define the catamorphism if this fixed point is not explicitly
available (as in Generic Haskell).

cata :: Regular d = (FunctorOf dab — b) — (da —b)
cata alg = alg . fmap?2 id (cata alg) . out

Function fmap?2 is a polytypic function, the two-argument variant of map. It is
defined by induction over the structure of bifunctors. It takes two functions p
and r as arguments, and applies p to occurrences of the parameter, and r to
occurrences of the recursive data type.

polytypic fmap2 :: (a —¢c) - (b—d) -fab—fcd
=Apr—
case f of

g+h — (fmap2pr) —+- (fmap2 p r)

gxh — (fmap2 p r) —x= (fmap2 p r)
Empty — id

Par — D

Rec —r

dQg — pmap (fmap2 p r)

Const t — id

Here -+- and -*- have the following types:

(-+-)::(gab—gcd)—(hab—hcd)— ((g+h)ab— (g+h)cd)
(-x-)::(gab—gcd)—(hab—hcd)— ((g*xh)ab— (g« h)cd),

where + and * are the internal sum and product types used by PolyP.

Function encode. Function encode takes an encoder for parameter values as
argument, and recurses over its argument by means of a catamorphism. The
algebra of the catamorphism is given by the polytypic function fencode. The
choice between an O and an I is made, again, in the sum case. The encoder for
parameter values is applied in the Par case. The other cases are standard.

encode it Regular d = (a — [Bit]) — d a — [Bit]
encode enca = cata (fencode enca)

Comparing Approaches to Generic Programming in Haskell 103

polytypic fencode :: (a — [Bit]) — f a [Bit] — [Bit] =

Aenca —
case f of
g+h — (Az — O fencode enca) ‘foldSum'
(Ay — I : fencode enca y)
g*h — Az, y) — fencode enca x + fencode enca y
Empty — const []
Par — enca
Rec — id
dag — encode (fencode enca)

Const Int — encodelnt
Const Char — encodeChar

foldSum ::(gab—c)—(hab—c)— ((g+h)ab—c)

Function decode. Function decode is the inverse of function encode. It is defined
in terms of function decodes:

decodes it Regular d = Parser a — Parser (d a)
decodes deca = mapP inn (fdecodes deca (decodes deca))

polytypic fdecodes :: Parser a — Parser b — Parser (f ab) =
Adeca dechb —
case f of
g+h — bitCase (mapP Left (fdecodes deca dech))
(mapP Right (fdecodes deca dech))
gxh — Abits — [((z,y),12)
| (z,71) « fdecodes deca decb bits
, (y, m2) « fdecodes deca decb]
Empty — Abits — [((), bits)]

Par — deca
Rec — decb
dag — decodes (fdecodes deca decb)

Const Int — decodesInt
Const Char — decodesChar.

Given the definition of function encode, the definition of functions decode (omit-
ted) and decodes is rather standard. We have used a list comprehension in the
product case of function fdecodes to stay as close as possible to the implemen-
tation of decodes in Generic Haskell. List comprehensions are not supported by
PolyP, so to compile the program, this piece of code should be replaced by its
equivalent not using list comprehensions.

The definition of the polytypic functions eq and map contain no surprises:
both are similar to the definitions of function fmap2 and encode, and can be
found in PolyLib [49].

Function update. It is impossible to define a generic function in PolyP that can
be used to update the salaries in a Company value. First, the data type Company

104 R. Hinze, J. Jeuring, and A. Loh

does not have kind * — x. But even if we add a superfluous type variable to the
data type Company, PolyP does not ‘look into’ the constituent Dept values, and
hence never changes a Salary. The only way to update a salary in a company
structure is by defining Company as one big recursive data type, ‘inlining’ the
definitions of most of the constituent data types, and by adding a superfluous
type variable.

Evaluation

Structural dependencies. PolyP adds polytypic functions, which depend on ty-
pes, to Haskell.

Full reflexivity. PolyP is not fully reflexive: polytypic functions can only be
used on regular data types of kind x — %. Important classes of data types for
which polytypic functions do not work are mutually-recursive data types and
data types of kind .

Type universes. PolyP only works on regular data types of kind x — *. Besides
the obvious disadvantages, this has an advantage as well: since the structure of
regular data types of kind x — % can be described by a bifunctor, we can define
functions like the catamorphism on arbitrary data types in PolyP. The cata-
morphism cannot be defined in Generic Haskell without the concept of generic
views [45]. PolyP supports defining generic functions on particular data types
using the Const case.

First-class generic functions. Polytypic functions are not first class in PolyP1.
In the lightweight approach PolyP2 polytypic functions are first class.

Multiple type arguments. Polytypic functions are defined by induction over a
single bifunctor.

Type system. Polytypic functions are explicitly typed. The compiler checks type-
correctness of polytypic functions.

Type safety. Type-correct polytypic functions are translated to type-correct
Haskell functions. Forgetting an arm in the case expression of a polytypic func-
tion leads to an error when the generated Haskell is compiled or interpreted.

The type of a generic function. Types of polytypic functions are direct abstrac-
tions of types on normal data types, and closely correspond to intuition.

Properties of generic functions. Jansson and Jeuring [57U50] show how to reason
about polytypic functions, and how to derive a property of a polytypic function
from its type.

Comparing Approaches to Generic Programming in Haskell 105

Integration with the underlying programming language. The integration of poly-
typic programming and Haskell is not completely seamless. PolyP1 and the op-
tional compiler of PolyP2 do not know about classes, or types of kind other than
* — %, and lack several syntactic constructions that are common in Haskell,
such as where clauses and operator sections. It is wise to separate the polytypic
functions from other functions in a separate file, and only compile this file with
PolyP1 or PolyP2. The Haskell library part of PolyP2 integrates seamlessly with
Haskell.

Polytypic functions can be used on values of data types without any extra
work. It is not necessary to specify a type argument: PolyP1 infers the data types
on which a polytypic function is called, and uses this information to specialize
a polytypic function for a particular data type.

Specialization versus interpretation. PolyP1 and the optional PolyP2 compiler
specialize applications of polytypic functions at compile-time. The PolyP2 Has-
kell library interprets bifunctors at run time.

Code optimization. Like Generic Haskell, PolyP1 does not optimize away the
extra marshaling that is introduced by the compiler for instances of polytypic
functions. This might be an impediment for some applications.

Separate compilation. PolyP provides separate compilation.

Practical aspects. A compiler for PolyP can be downloaded. It is usable on the
platforms on which GHC is available. It is not very actively maintained anymore:
the latest release is from 2004. It is reasonably well documented, although not all
limitations are mentioned in the documentation. PolyP’s error messages could
be improved.

4.3 Scrap Your Boilerplate

Scrap Your Boilerplate (SYB) [61l64] is a library that provides combinators
to build traversals and queries in Haskell. A traversal processes and selectively
modifies a possibly complex data structure, whereas a query collects specific
information from a data structure. Using SYB one can extend basic traversals
and queries with type-specific information, thereby writing generic functions.

Generic functions in SYB are applicable to all data types of the type class
Data. This class provides fundamental operations to consume or build values of
a data type, as well as general information about the structure of a data type.
All other functions are built on top of methods of the class Data.

A partial definition of the class Data is shown in Figure 2

The function toConstr yields information about the data constructor that
has constructed the given value. The data type Constr is abstract and can be
queried for information such as the name of the constructor, or the data type it
belongs to.

Similarly, dataTypeOf returns information about the data type of a value,
again encapsulated in an abstract data type DataType.

106 R. Hinze, J. Jeuring, and A. Loh

class (Typeable a) = Data a where

toConstr :: a — Constr
dataTypeOf :: a — DataType
gfoldl V.

(Vab.Dataa=f(a—b)—a—fb)
— (Va.a—fa)

—a—fa

Fig. 2. Partial definition of the type class Data

The function gfoldl is a very general function that allows the destruction of
a single input value — the third argument — of type a into a result of type f a.
Almost any Haskell value is an application of a data constructor to other values.
This is the structure that gfoldl works on. If a value v is of the form

Cuvg...vu,
then gfoldl (0) ¢ v is
(- ((c Cov)ovg)o - 0ouy,).

The second argument c is applied to the data constructor C, and each application
is replaced by the first argument (¢). In particular,

unld . gfoldl (A\z y — Id (unld z y)) Id
is the identity on types of class Data. Here, the auxiliary type
newtype Id a = Id{unld :: a}

is used, because the result type of f a of gfoldl can be instantiated to Id a, but
not directly to a in Haskell. If we could, then

gfoldl ($) id

would be the identity, making the role of gfoldl more obvious.
With the help of gfoldl, a basic query combinator can be defined, which also
forms part of the SYB library:

gmap@ ::Va.Data a = (Vb.Datab=b —c) —a — [c].

A call gmap@ q x takes a query ¢ (of type Vb. Data b = b — c) and applies it
to the immediate subterms of z, collecting the results in a list.

Function encode. A good example of a function using gmap@ is the function
encode, which can be written using the SYB library as follows:

Comparing Approaches to Generic Programming in Haskell 107

encode :: Data a = a — [Bit]
encode x = concat (encodeConstr (toConstr x) : gmapQ encode).

The function encodeConstr takes the current constructor and encodes it as a list
of bits:

encodeConstr :: Constr — [Bit]
encodeConstr ¢ = intinrange2bits (maxConstrindes (constrType c))
(constrindex ¢ — 1).

The function intinrange2bits, which encodes a natural number in a given range
as a list of bits, comes from a separate Haskell module for manipulating bits. In
encode, the constructor for the current value z is encoded, and we use gmap@
to recursively encode the subterms of x.

With encode, we can for instance encode booleans, lists, and trees: we have a
generic function. However, the default behavior is unsuitable for handling base
types such as Int and Char. If we want to use type-specific behavior such as
encodelnt and encodeChar, the SYB library allows us to extend a query with a
type-specific case, using extQ:

ext@ ::Va b c. (Typeable a, Typeable b) = (a —¢) — (b — ¢) — (a — ¢).

This function makes use of run-time type information which is encapsulated in
the type class Typeable and available for all types in Data, as Typeable is a
superclass of Data. It is essentially a one-arm type-case [83]. Using ext®), we can
write encode with type-specific behavior for Ints and Chars:

encode :: Data a = a — [Bit]

encode = (Az — concat (encodeConstr (toConstr x) : gmap@ encode x))
‘extQ* encodelnt
‘extQ encodeChar.

Note that we cannot reuse the previously defined version of encode in this new
definition, because the recursive call to encode that appears as an argument
to gmap@ must point to the extended function (this is solved by the modified
approach discussed in the section on “SYB with Class”).

Function decode. The gfoldl combinator is only suitable for processing values.
In order to write a generic producer such as decode, a different combinator is
required. The Data class provides one, called gunfold:

gunfold :: Vaf.
(Vab.Dataa=f(a—b)—1fb)
— (Va.a—fa)
— Constr — f a.

108 R. Hinze, J. Jeuring, and A. Loh

If d:: Constr is the constructor information for the data constructor C, which
takes n arguments, then gunfold app c¢ d is

app (--- (app (c C)) --),

thus app applied n times to ¢ C. As with gfoldl, SYB provides several com-
binators built on top of gunfold, the most useful being fromConstrM , which
monadically constructs a value of a certain constructor:

fromConstrM ::¥a f.(Data a, Monad f) = (Vb. Data b = f b) —
Constr — f a
fromConstrM p = gunfold (‘ap‘p) return.

Here, ap::Va b f. Monad f = f (a — b) — f a — f b is lifted function application.
Using fromConstrM , we can define decodes, but since fromConstrM requires
a monad, we have to turn our parser type into a monad. Recall that

type Parser a = [Bit] — [(a, [Bit])].

We turn Parser into a state monad by wrapping it into a newtype construct
and defining appropriate class instances:

newtype ParserM a = M{runM :: Parser a}

instance Monad ParserM where

return x = M (As — [(z, s)])

f>=g9g =MAs—[r|(z,s)—runM f s,r — runM (g z) s'])
instance MonadState [Bit] ParserM where

get =M (As —[(s,9)])

put s = M (A —[((),9)])-

The code for decodes is then defined as follows:

decodes :: Data a = Parser a
decodes = decodes’ L
‘extR* decodesInt
‘extR‘ decodesChar
where
decodes’ :: Data a = a — Parser a
decodes’ dummy = runM $
dolet d = dataTypeOf dummy
I = length (int2bits (length (dataTypeConstrs d) — 1))
¢ «— consume [
let con = decodeConstr ¢ d
fromConstrM (M decodes) con.

A few remarks are in order. The function decodes calls decodes’ with L. This
is a convenient way to obtain a value of the result type a, so that we can ap-
ply dataTypeOf to it. The function decodes’ reads in [bits from the input via

Comparing Approaches to Generic Programming in Haskell 109

consume, interprets these bits as a constructor con using decodeConstr, and
finally employs fromConstrM to decode the children of the constructor recur-
sively. In addition, decodes’ performs the necessary conversions between Parser
and ParserM.

The functions consume and decodeConstr are both easy to define. Type-
specific behavior for integers and characters is added to decodes using the SYB
extension operator eztR, which plays a role analogous to ext@, in the context of
monadic generic producers:

extR ::Va b f.(Monad f, Typeable a, Typeable b) = fa —fb —fa.
From decodes, we get decode in the obvious way:

decode :: Data a = [Bit] — a
decode bs = case decodes bs of

(r,[]) =
— error "decode: no parse'.

Function eq. The definition of generic equality in SYB is simple, but requires
yet another combinator:

eq :: Data a = a — a — Bool

eq = eq

eq' :: (Data a, Data b) = a — b — Bool

eq' © y =toConstr z toConstr y A and (gzip WithQ eq’ z y).

The function eq is a type-restricted variant of eq’, which accepts two arguments
of potentially different types. The constructors of the two values are compared,
and gzipWith@ is used to pairwise compare the subterms of the two values
recursively.

The combinator gzip With@ is a two-argument variant of map@. It is a bit
tricky to define, but it can be defined in terms of gfoldl.

Note that eq’ requires the relaxed type, because the subterms of z and y
only have compatible types if they really are of the same data constructor. If we
compare unequal values, we are likely to get incompatible types sooner or later.

The trick to relax the type of a generic function is not always applicable. For
example, if we also want to extend equality on an abstract type for which we
only have a normal equality function (one that expects two arguments of the
same type), we have to make sure that both arguments are indeed of the same
type. In this case, we can use the dynamically available type information from
class Typeable to define a unification function

unify :: (Typeable a, Typeable b) = Maybe (a — b)

and then call unify to coerce the types where necessary.

110 R. Hinze, J. Jeuring, and A. Loh

Function map. A generic function such as map that abstracts over a type con-
structor cannot be defined using SYB, because the Data class contains only
types of kind *. It is possible to define variants of map, such as traversals that
increase all integers in a complex data structure, but it isn’t possible to define a
function of type

Vabf.(a—b)—fa—fb,

where the arguments of the container type f are modified, and the function is
parametrically polymorphic in a and b (see also the section on “SYB Revolu-
tions” below).

Function show. We define show in two steps, as we have done in the Generic
Haskell case. The function showP takes an additional string transformer that
encodes whether to place surrounding parentheses on non-atomic expressions or
not.

We have already seen how constructor information can be accessed in the
definition of encode. Therefore, the definition of showP does not come as a
surprise:

showP :: Data a = (String — String) — a — String
showP p = (Ax — showApp (showConstr (toConstr z))
(gmap@ ((+) " " . showP parens) x))
‘ext1Q* showList
‘extQ‘ (Prelude.show :: String — String)
where
parens t ="("Hz H ")"
showApp :: String — [String] — String
showApp z [] =z
showApp © xs = p (concat (z : xs))
showList :: Data a = [a] — String
showList xs =
"[" H concat (intersperse "," (map (showP id) zs)) H "1".

We feed each constructor application to showApp. On atomic subexpressions,
showApp never produces parentheses, otherwise it consults p.

The most interesting part is how to define type-specific behavior for lists
and strings. Placing strings between double quotes is achieved by the standard
Haskell show function using the ezt extension operator. However, the more
general syntactic sugar for lists (placed between square brackets, elements sep-
arated by commas) is not achieved so easily, because showList is a polymorphic
function, and ext@ only works if the second argument is of monomorphic type.
SYB therefore provides a special, polymorphic, extension operator

ext1Q) ::Va c. (Typeablel f, Data a) =
(a—c)— (Vb.Datab=fb—c)— (a—c).

Comparing Approaches to Generic Programming in Haskell 111

Note that polymorphic extension requires a separate operator for each kind, and
also a separate variant of the cast operation: the run-time type information of
the type constructor f of kind x — x is made available using the type class
Typeablel rather than Typeable.

Function update. Traversals that update a large heterogeneous data structure in
selective places were one of the main motivations for designing SYB. Therefore,
it isn’t surprising that defining such a traversal is extremely simple:

update :: Data a = a — a
update = everywhere (id ‘extT* (A(S s) — S (s * (14 0.15)))).

The argument to everywhere is the identity function, extended with a type-
specific case for the type Salary. The function everywhere is a SYB combinator
that applies a function at any point (constructor) in a data structure. It is defined
in terms of

gmapT ::Va.Data a = (Vb.Data b=b —b) — (a — a),

a variant of gmap@ that applies a given generic function to the immediate sub-
terms of a value. The gmapT can again be defined using gfoldl. Note that all
these functions similar to, but different from the generic map function, which
applies an argument function to all occurrences of values of a parameter type in
a data type of a higher kind.

Derived work: SYB with Class. Lammel and Peyton Jones have shown [62]
that using type classes rather than run-time type casts can make generic pro-
gramming using SYB more flexible. Their work aims at replacing SYB extension
operators such as ext) and eztR: each generic function is then defined as a class
with a default behavior, and type-specific behavior can be added by defining
specific instances of the class.

To achieve this added flexibility, some alterations to the class Data are re-
quired. The class must be parametrized over a context parameter:

class (Typeable a, Sat c a) = Data c a where

toConstr :: Proxy ¢ — a — Constr
dataTypeOf :: a — DataType
gfoldl = V. Proxy c

— (Vab.Dataca=f(a—b)—a—fbh)
— (Va.a—fa)
—a—fa.

The context parameter ¢ together with the class constraint on Sat ¢ a simulates
abstracting over a superclass: recursive generic functions are defined as a class.
Because the class methods make use of the generic combinators such as gfoldl
or derived combinators such as gmap@, Data must be a superclass of the class

112 R. Hinze, J. Jeuring, and A. Loh

of the function. But because the Data constraint occurs inside the type of the
generic combinators such as gfoldl, the class of the function must also be a
superclass of Data. This is not directly possible, hence the encoding via the
context parameter.

The presence of this encoding leads to a number of encumbrances and sub-
tleties in the “SYB with Class” approach. Sometimes, Haskell is not clever
enough to figure out the correct instantiation of the context parameter itself.
Therefore, the class methods of Data all take an additional parameter of type
Proxy c, with the sole purpose to make the instantiation of ¢ explicit. Further-
more, the possible instantiations of ¢ are dictionary types that have to be defined
for each generic function (or group of mutually recursive generic functions).

As an example, let us look at encode again. In the class-based approach, we
define encode simply as follows:

class Encode a where
encode :: a — [Bit].

However, to turn it into a generic definition, we must now define a suitable
context to use in the argument of Data. This requires the following definitions:

data Encode a = Encode{ encodeD :: a — [Bit]}

encodeProxy :: Proxy Encode
encodeProxy = 1

instance Encode a = Sat Encode a where
dict = Encode{ encodeD = encode }.

The class Sat need only be defined once and is given simply as

class Sat ¢ a where
dict :: c a.

We are now in a position to give the generic definition of encode:

instance (Data Encode a) = Encode a where
encode x = concat (encodeConstr (toConstr encodeProxy x) :
gmap@ encodeProzy (encodeD dict)).

If we compare this definition with the definition of encode in original SYB style
on page [I0G], then there are only few differences: first, the type-specific cases
are missing (they can be added later using specific class instances); second,
the proxy arguments are passed (also gmap(@) takes a proxy argument now) to
help the type checker along; third, the recursive call of encode is replaced by
encodeD dict. The latter is because the argument to gmap@ must actually have
type Va. Data Encode a = a — [Bit] in this case, and the direct use of encode
would introduce an illegal constraint on Encode a.

Type-specific cases can now be defined separately (and later) as additional
instances of Encode:

Comparing Approaches to Generic Programming in Haskell 113

instance Encode Int where
encode = encodelnt

instance Encode Char where
encode = encodeChar.

As we can see from this example, there is a significant advantage to using SYB
with classes, but there are disadvantages as well: the user has additional work,
because for each generic function, an additional context type, a proxy, and an
embedding instance for Sat must be defined. The use of dict rather than direct
recursive calls, and the passing of proxy arguments is quite subtle. Furthermore,
the class structure used here requires the GHC extensions of overlapping and
undecidable instances.

Derived work: SYB Reloaded and Revolutions. In their SYB Reloaded
and Revolutions papers, Hinze, Loh and Oliveira [44J43] demonstrate that SYB’s
gfoldl function is in essence a catamorphism on the Spine data type, which can
be defined as follows:

data Spine ¢ where
Constr :: Constr — a — Spine a
(¢) :: Data a = Spine (a — b) — a — Spine b.

Furthermore, a “type spine” type is given as a replacement for gunfold, and a
“lifted spine” type for generic functions that are parametrized over type con-
structors. For example, using the lifted spine type, map can be defined.

Evaluation

Structural dependencies. SYB allows the definition of generic functions. There
is no support for defining type-indexed data types.

Full reflexivity. The SYB approach is not fully reflexive. Generic functions are
only applicable to data types for which a Typeable instance can be specified.
This implies, amongst others, that higher-kinded data types such as GRose can-
not be turned into instance declarations as this requires so-called higher-order
contexts. The original proposal for Derivable Type Classes (discussed in Sec-
tion 8] recognizes this shortcoming and proposes a solution in the form of
higher-order contexts, but this extension has never been implemented.
Type-specific behavior is only possible for types of kind *.

Type universes. There is no support for type universes in SYB. All generic
functions are supposed to work on all types in the Typeable class.

First-class generic functions. In SYB, generic functions are normal polymorphic
Haskell functions, and as such are first-class. However, so-called rank-n types
are required (a function has rank 2 if it takes a polymorphic function as an
argument). Most Haskell implementations support rank-n types.

114 R. Hinze, J. Jeuring, and A. Loh

Multiple type arguments. There is no restriction on the number of type argu-
ments that a generic function can have in SYB, although the basic combinators
are tailored for functions of the form

Dataa=a— ...

that consume a single value.
Type system. SYB is completely integrated in Haskell’s type system.

Type safety. SYB is type-safe, but type-specific extensions of generic functions
rely on run-time type casting via the Typeable class. It is possible for a user
to break type safety by defining bogus instances for the Typeable class. The
implementation could be made more robust if user-defined instances of class
Typeable would not be allowed, and all Typeable instances would be derived
automatically by the compiler.

The type of a generic function. Types of generic functions have one or more
constraints for the Data class. The types are intuitive, maybe except for the
generic combinators such as ext!Q and gunfold.

Properties of generic functions. The use of type classes Data and Typeable at
the basis of SYB makes proving properties relatively difficult. Instances for these
classes can be generated automatically, but automatic generation is only de-
scribed informally. User-defined instances of these classes can cause unintended
behavior. There is no small set of fundamental data types (such as Generic
Haskell’s unit, binary sum, and binary pair types) to which Haskell data types
are reduced. Lammel and Peyton Jones state a few properties of basic SYB com-
binators in the original paper, but provide no proof. The only work we are aware
of trying to prove properties about SYB is of Reig [88], but he translates SYB
combinators into Generic Haskell to do so.

Integration with the underlying programming language. SYB is fully integrated
into GHC. Making SYB available for Hugs or another Haskell compiler would
be a major effort. The module Data.Generics contains all SYB combinators.
The options -fglasgow-exts is required for GHC to support the higher-ranked
types of some of the SYB combinators. No extra work is needed to use a generic
function on a data type other than writing deriving (Data, Typeable) after the
data-type declaration.

Specialization versus interpretation. The SYB approach makes use of run-time
type information. Generic functions have Data class constraints. Most Haskell
compilers implement type classes using dictionary passing: for each Data con-
straint, a record containing the appropriate class methods is passed along at
run-time. The Data is a subclass of Typeable, which provides the actual struc-
ture of the type at run-time. This information is used to provide run-time type
casts to enable type-specific behavior.

Comparing Approaches to Generic Programming in Haskell 115

Code optimization. As SYB is a Haskell library, the code is not optimized in any
special way. The implementation of generic functions is relatively direct. The
passing of class dictionaries, the type casts, and the use of many higher-order
functions might sometimes lead to a considerable overhead.

Separate compilation. Generic functions are normal Haskell functions, and can
be placed in different modules and compiled separately. Generic functions them-
selves are not extensible, however. If new specific cases must be added to a
generic function, the whole definition has to be repeated. This restriction is
lifted by “SYB with Class”.

Practical aspects. SYB is shipped as a library with current releases of GHC and
supported. It is planned to provide the functionality of “SYB with Class” in
future releases of GHC. The Spine data type from “SYB Reloaded” is not yet
used in the official release, but might be integrated in the future.

4.4 Approaches Based on Reflection

Both DrIFT [99] and generic programming approaches using Template Has-
kell [82] use a kind of reflection mechanism to generate instances of generic
functions for a data type. Generic functions are defined on an abstract syntax
for data types. This section introduces and evaluates these two approaches.

DrIFT

DrIFT is a type sensitive preprocessor for Haskell. It extracts type declarations
and directives from Haskell modules. The directives cause rules to be fired on
the parsed type declarations, generating new code which is then appended to
the bottom of the input file. An example of a directive is:

{- ! for Foo derive : update, Show -} .

Given such a directive in a module that defines the data type Foo, and rules for
generating instances of the function update and the class Show, DrIFT generates
a definition of the function update on the data type Foo, and an instance of Show
for Foo. The rules are expressed as Haskell code, and a user can add new rules
as required.

DrIFT comes with a number of predefined rules, for example for the classes
derivable in Haskell and for several marshaling functions between Haskell data
and, for example, XML, ATerm, and a binary data format.

A type is represented within DrIF'T using the following data definition.

data Statement = DataStmt | NewTypeStmit

data Data = D{name :: Name -- type name
, constraints :: [(Class, Var)| -- constraints on type vars
, vars i [Var] -- parameters

, body :: [Body] -- the constructors

116 R. Hinze, J. Jeuring, and A. Loh

, derives :: [Class] -- derived classes
, statement :: Statement -- data or newtype
}

type Name = String

type Var = String

type Class = String

A value of type Data represents one parsed data or newtype statement. These
are held in a D constructor record. The body of a data type is represented by a
value of type Body. It holds information about a single constructor.

data Body = Body{ constructor :: Constructor -- constructor name
, labels :: [Name] -- label names
, types i [Type] -- type representations

}

type Constructor = String
The definition of Type is as follows.

data Type = Arrow Type Type -- function type
| Apply Type Type -- application

| Var String -- variable
| Con String -- constant
| Tuple [Type] - tuple

| List Type - list

deriving (FEq, Show)

For example, the data type CharList is represented internally by:

reprCharList = D{name = "CharList"
, constraints = []
, vars =[]
, body = [bodyNil, bodyCons]
, derives =[]

, statement = DataStmt

}

bodyNil = Body{ constructor = "Nil"
, labels =]
, types =]
¥
bodyCons = Body{ constructor = "Cons"
, labels =]
, types = [Con "Char"

, Con "CharList"]

1.

A rule consists of a name and a function that takes a Data and returns a docu-
ment, a value of type Doc, containing the textual code of the rule for the Data

Comparing Approaches to Generic Programming in Haskell 117

value. The type Doc is defined in a module for pretty printing, and has sev-
eral operators defined on it, for example for putting two documents beside each
other (<+>) (list version hsep), above each other $$ (list version veat), and for
printing texts (text and texts) [47]. Constructing output using pretty-printing
combinators is easier and more structured than manipulating strings.

Function encode. We now explain the rules necessary for obtaining a definition
of function encode on an arbitrary data type. For that purpose, we define the
following class in our test file.

class Encode a where
encode :: a — [Bit]

and ask DrIFT to generate instances of this class for all data types by means
of the directive {-!global: encode -} . For example, for the type CharList it
generates:

instance Encode Charlist where
encode Nil =[0]
encode (Cons aa ab) = [I] 4 encode aa H encode ab.

Rules for generating such instances have to be added to the file UserRules.hs.

encodefn :: Data — Doc
encodefn d =
instanceSkeleton "Encode"
[(makeEncodefn (mkBits (body d)), empty)]
d

mkDBits :: [Body] — Constructor — String
mkBits bodies ¢ = (show
. intinrange2bits (length bodies)
. fromJust
. elemIndez c
. map constructor
) bodies

The function encodefn generates an instance of the class Encode using the utility
function instanceSkeleton. It applies makeEncodefn to each Body of a data type,
and adds the empty document at the end of the definition. The function mkBits
takes a list of bodies, and returns a function that when given a constructor
returns the list of bits for the constructor in its data type. For example, the list
of bits for a data type with three constructors are [[O, O],[0,1],[I, O]]. As
before, we use the utility function intinrange2bits to encode a natural number
in a given range.

The function makeEncodefn takes an encoding function and a body, and re-
turns a document containing the definition of function encode on the constructor
represented by the body. If the constructor has no arguments, encode returns

118 R. Hinze, J. Jeuring, and A. Loh

the list of bits for the constructor, obtained by means of the encoding function
that is passed as an argument. If the constructor does have arguments, encode
returns the list of bits for the constructor, followed by the encodings of the ar-
guments of the constructor. For the argument of encode on the left-hand side of
the definition we have to generate as many variables as there are arguments to
the constructor. These variables are returned by the utility function varNames.
Function varNames takes a list, and returns a list of variable names, the length
of which is equal to the length of the argument list. The constructor pattern is
now obtained by prefixing the list generated by varNames with the constructor.
This is conPat in the definition below. The encodings of the arguments of the
constructor are obtained by prefixing the generated variables with the function
encode, and separating the elements in the list with the list-concatenation opera-
tor . Finally, equals is a utility function that returns the document containing
an equality sign, ‘=".
makeEncodefn :: (Constructor — String) — (Body — Doc)
makeEncodefn enc (Body{ constructor = constructor, types = types}) =
let bits = text (enc constructor)
encodeText = text "encode"
constrText = text constructor
in let newVars = varNames types

conPat = parens . hsep $ constrText : newVars
lhs = encodeText <+> conPat
rhs = (fsep

. sep With (text "++")

. (bits:)

.map (An — encodeText <+> n)

) newVars

in lhs <+> equals <+> rhs

Function decode. Decoding is a bit more complicated. First, we define the fol-
lowing class in our test file.

class Decode a where

decodes :: Parser a

decode o [Bit] — a

decode bits = case decodes bits of
[y, [D] — v

— error "decode: no parse"

Then we ask DrIFT to generate instances of this class for all data types by means
of the directive {-!global: decode -} . For example, for the type CharList it
should generate:

instance Decode Charlist where
decodes (O : xs) = [(Nil, zs)]

Comparing Approaches to Generic Programming in Haskell 119

decodes (I : xs) = [(Cons resy resa, xs2) | (resy1, xs1) < decodes xs
, (resa, wsa) «— decodes xs1]
decodes] = error "decodes".

The decode function generates an instance of the class Decode. It adds the dec-
laration of decodes on the empty list as the last line in each class instance.

decodefn :: Data — Doc
decodefn d =
instanceSkeleton "Decode"
[(mkDecodefn (mkBitsPattern (body d))
,text "decodes [] = error \"decodes\"")

]
d

Here, function mkBitsPattern is almost the same as function mkBits, except for
the way in which the list of bits is shown. We omit its definition.

The function mkDecodefn produces the cases for the different constructors.
The left-hand side of these cases are obtained by constructing the appropri-
ate bits pattern. The right-hand side is obtained by means of the function
decodechildren, and returns a constructor (applied to its arguments). If a con-
structor has no arguments this is easy: return the constructor. If a construc-
tor does have arguments, we first decode the arguments, and use the results of
these decodings as arguments to the constructor. The implementation of func-
tion mkDecodefn is almost a page of Haskell code, and can be found in the
accompanying technical report [40].

Instances of class Eq. The rules necessary for generating an instance of the
class Fq for a data type are very similar to the rules for generating an in-
stance of the class Encode. These rules are omitted, and can be found in the file
StandardRules.hs in the distribution of DrIFT.

Function map. The rules for generating instances of the map function on dif-
ferent data types differ from the rules given until now. The biggest difference is
that we do not generate instances of a class. Any class definition is of the form
class C' t where ..., in which the kind of the type t is fixed. So suppose we
define the following class for map:

class Map{t]} where
map :: (a —b) —>ta—th.

Then we can only instantiate this class with types of kind x — %. Since the data
type of generalized trees GTree has kind * — * — *, we cannot represent the
‘standard’” map function on GTree by means of an instance of this class. Instead,
we generate a separate map function on each data type. For example, on the
type GTree we obtain:

120 R. Hinze, J. Jeuring, and A. Loh

mapGTree fa fb GEmpty = GEmpty

mapGTree fa fo (GLeaf a) = GLeaf (fa a)

mapGTree fa fo (GBin 1l v r) = GBin (mapGTree fa fb 1)
()
(mapGTRee fa fbr).

It is impossible to define a generic map that works on types of different kinds for
many of the other approaches to generic programming. DrIFT allows us to do
anything we want, which we illustrate by defining map in an alternative fashion.
The function mapfn generates a definition of map for each constructor using
mkMapfn. The function mkMapfn takes as arguments the name of the data type
(for generating the name of the map function on the data type) and the variables
of the data type (for generating the names of the function arguments of map).

mapfn :: Data — Doc
mapfn (D{ name = name, vars = vars, body = body }) =
veat (map (mkMapfn name vars) body)

Function mkMapfn creates the individual arms of the map function. For gen-
erating the right-hand side, it recurses over the type of the constructor in the
declaration rhsfn.

mkMapfn name vars (Body{ constr = constructor, types = types }) =
let mt name = text ("map" H name)
mapArgs = hsep (texts (map (Av — £’ : v) vars))

newVars = varNames types

conPat = parens . hsep $ text constr : newVars
lhs = mt name <+> mapArgs <+> conPat
rhs = hsep (text constr

s map (parens . rhsfn) (zip newVars types)

rhsfn = A(newVar, rhstype) —
case rhstype of
LApply t ts — hsep
(mt (getName t)
: hsep (map mkMapName ts)

+ [newVar]

)
Var v — text (£’ 1 v) <+> newVar
Con s — mt s <+> newVar
List t — text "map"

<+> parens (mt (getName t)
<+> mapArgs
)
<+> newVar
x — newVar
in lhs <+> equals <+> rhs

Comparing Approaches to Generic Programming in Haskell 121

The utility functions mkMapName and getName return the name of the func-
tion to be applied to the arguments of a constructor, and the name of a type,
respectively.

mkMapName (LApply s t) = parens (mkMapName s
<+> hsep (map mkMapName t)

)

mkMapName (Var s) = text (*£7 :)

mkMapName (Con s) = text ("map" H s)

mkMapName (List t) = text "map" <+> mkMapName t
mkMapName = error "mkMapName"

getName (LApply s t) = getName s

getName (Var s) =5

getName (Con s) =5

getName (List t) = getName t

getName = error "getName"

Template Haskell

Template Haskell is a language extension that allows meta-programming within
the Haskell language. Template Haskell consists of multiple components.

A library (exported by Language.Haskell. TH) provides access the the abstract
syntax of the Haskell language. This makes it possible to analyze and construct
Haskell programs within Haskell. A monad Q is provided to generate fresh names
on demand.

Haskell expressions can be quoted to easily construct terms in the abstract
syntax. For example,

[2 + 2] :: Q Exp.

Template Haskell supports reflection (reification), so that it is possible to analyze
the structure of an already defined value or data type:

reify :: Name — Q Info.

The Info data type has multiple constructors corresponding to different kinds of
declarations, but in particular, there is a constructor for data types:

data Info = ...
| TyConl Dec

data Dec = ...
| DataD Cxt Name [Name] [Con] [Name]

data Con = NormalC Name [StrictType]
| RecC Name [VarStrictType]
| InfizC StrictType Name StrictType
| ForallC' [Name] Cxt Con.

122 R. Hinze, J. Jeuring, and A. Loh

Each data type comprises a context (possible class constraints), a name, a list of
parameters, a list of constructors, and a list of classes it automatically derives.
Constructors can either be normal constructors, records, infix constructors, or
constructors with quantification. A StrictType is a type with a possible strictness
annotation, a VarStrictType additionally contains a record label.

Finally, in Template Haskell we can splice values constructed in the abstract
syntax into Haskell programs, making it possible to run programs that are gen-
erated by meta-programs. Splicing is dual to quoting, so that

$([2+2]) :: Int

results in 4.

By its very nature, Template Haskell can be used to write programs that
cannot be expressed, or are at least difficult to express, in the Haskell language,
such as generic programs. With Template Haskell, we can analyze data-type
definitions, and depending on their structure, generate specialized code.

It is important to realize that Template Haskell itself is not an approach
to generic programming, but more like an implementation technique. Template
Haskell gives the programmer a lot of power and freedom, but does not provide
any guidance or even a framework for generic programming.

While DrIFT’s main focus is to generate type-class instances, we can use
Template Haskell much more flexibly:

— we can generate the structure-representation type (like in Generic Haskell)
for a given data type, plus the embedding-projection pairs;

— for a generic function, we can construct a recipe that uses the abstract syntax
of a data type to construct the abstract syntax of a specialized instance of
the generic function;

— we can generate instances of a type class, both for a generic function directly
(like in DrIFT, Derivable Type Classes, or Generics for the Masses), or for
a powerful combinator like gfold in Scrap Your Boilerplate.

In principle, Template Haskell can be used to simulate or support any approach
to generic programming in Haskell. However, we also run into many of the prob-
lems that we encountered in DrIFT:

— everything happens at the syntactic level, not the semantic level. While
constructing generic functions, we have to pay attention to low-level concepts
such as free and bound variables;

— the analysis of data types is also purely syntactic. We do not have access
to kind information, or recursion on the type level, directly, but have to
infer that from the definitions; writing generic functions for mutually recur-
sive data types or higher-kinded data types is difficult, because we have to
implement parts of a compiler;

— there is no guarantee that the meta-programs produce correct code under
all circumstances. The generated code is type-checked, so we are safe from
errors in the end, but this is a much weaker guarantee than we get from other
approaches such as Generic Haskell, where we know that the type-correctness
of a generic definition implies the type-correctness of all instances.

Comparing Approaches to Generic Programming in Haskell 123

Because of the above-mentioned freedom, it is difficult to implement the
canonical examples for generic programming using Template Haskell: there is
no single idiomatic version of a generic function, but there are many different
possibilities. We therefore don’t include specific examples in this document.

We are aware of one attempt to provide a serious framework for generic pro-
gramming within Template Haskell: Norell and Jansson [82] present a very so-
phisticated embedding of both PolyP and Generic Haskell into Template Haskell.
Among other things, they describe how to define generic map in the two different
encodings.

Evaluation

Structural dependencies. DrIFT and Template Haskell support the definition
of functions that take the abstract syntax of a data type as an argument, and
return executable Haskell code. In principle, both DrIFT and Template Haskell
can generate any document, even type-indexed data types. Especially for DrIFT,
generating anything other than class instances amounts to writing part of a
compiler for generic programming. In Template Haskell, it is feasible to design
at least a reusable framework for such advanced tasks. Both systems provide no
way to access type or kind information of the analyzed code. In particular, the
lack of kind inference for data types makes the creation of generic programs on
complex data types tedious.

Full reflexivity. DrIFT is not fully reflexive with respect to the set of data
types definable in Haskell 98: it cannot handle data types with higher-kinded
type variables, such as GRose. Just like Generic Haskell, DrIFT cannot generate
instances of functions on existential types or on GADTs.

We see, however, no reason in principle why DrIFT cannot be fully reflexive
with respect to the data types definable in Haskell 98.

Template Haskell’s abstract syntax handles all of Haskell 98 and beyond. It
does not yet support GADTs, but there is no reason why it could not be extended
in that way. Full reflexivity therefore depends on the generic programming ap-
proach one tries to simulate within Template Haskell.

Type universes. There is no support for type universes in DrIFT. Neither does
Template Haskell have any direct support for this concept.

First-class generic functions. DrIFT rules are plain Haskell functions, they can
take rules as arguments. First-class rules are inherited from Haskell. But it needs
a lot of imagination to see rules as generic programs. And an instance of a class
cannot be explicitly passed as an argument to a function or a class instance, so a
rule that generates an instance of a class (the only supported kind of definition
in DrIFT) cannot be passed as argument to a rule that generates a function or
a class instance.

Similarly, we have all the abstraction possibilities of Haskell for generic pro-
grams within Template Haskell. We can write generic meta-programs that are
parametrized over other generic meta-programs.

124 R. Hinze, J. Jeuring, and A. Loh

However, both DrIFT and Template Haskell are two-level approaches. DrIFT
always needs to be invoked before compilation of a Haskell module to fill in the
missing code. Template Haskell requires splicing of the generated code. Splicing
is a syntactic construct which is foreign to the Haskell language and further-
more underlies certain restrictions (sometimes, code that contributes to Tem-
plate Haskell programs must reside in several modules). Therefore, DrIFT and
Template Haskell cannot provide generic functions that are truly first-class.

Multiple type arguments. Rules cannot take multiple type arguments in DrIFT.
In Template Haskell, there are no theoretical limits.

Type system. Rules for generic functions all have the same type in DrIFT:
Data — Doc. There is no separate type system for rules; rules are ordinary
Haskell functions. In Template Haskell, the situation is similar. All Haskell ex-
pressions, for instance, are of type Exp in the abstract syntax of expressions, but
no further type information about the actual constructed expression is main-
tained. In particular, it is possible to construct type-incorrect expressions, caus-
ing type errors only when spliced.

Note that in addition to type errors, it is easy to generate lexer and parser
errors in DrIFT.

Type safety. A type-correct rule does not guarantee that the generated code is
type correct, as well. It is easy to define a type-correct rule that generates code
that does not type-check in Haskell. DrIFT is not type safe. The same holds for
Template Haskell, where the type correctness of a meta-program does not imply
that the use of that meta-program produces type-correct code.

The type of a generic function. In DrIFT, every rule has type Data — Doc.
Thus it is impossible to distinguish generic functions by type. For Template
Haskell, the type of generic functions depends completely on the approach that is
simulated. Generally, however, not much of a generic function’s type is reflected
in the type of the meta-program: as in DrIFT, generic functions in Template
Haskell typically map the abstract syntax of one or more data types to a number
of Haskell declarations. Lynagh [74] shows how to give more informative types
to Template Haskell programs.

Properties of generic functions. Since rules generate pretty-printed documents
(syntax), it is virtually impossible to specify properties of rules. For Template
Haskell, it is similarly impossible to specify properties. However, libraries for
generic programming defined in Template Haskell may allow to state and prove
properties.

Integration with the underlying programming language. If a user wants to im-
plement and use a new rule, DrIFT has to be recompiled. If a user wants to use
a rule, adding a directive to a Haskell file suffices. Template Haskell is superior
here, because Template Haskell code can almost freely be mixed with normal
Haskell code. Sometimes, code has to be divided in separate modules.

Comparing Approaches to Generic Programming in Haskell 125

Specialization versus interpretation. DrIFT specializes rules on data types fol-
lowing directives. Template Haskell also generates the programs in advance, but
a hybrid approach is conceivable: in the simulation of a lightweight approach,
some code would be generated for each data type, but a generic function would
be interpreted.

Code optimization. Code can be optimized by hand by specifying a more sophis-
ticated rule or meta-program. There need not be a run-time efficiency penalty
when using DrIFT or Template Haskell.

Separate compilation. It is easy to use rules on data types that appear in a
new module. Rules are separately compiled in DrIFT, and can then be used in
any module. Separate compilation in Template Haskell is possible because of its
integration with Haskell.

Practical aspects. DrIFT is actively maintained. The last release is from April
2006. It runs on many platforms. The user guide explains how to use DrIFT.
Template Haskell is actively maintained as part of GHC; the flag -fth must
be passed to GHC to be able to use it. Template Haskell is, however, still in
development, with new GHC releases regularly changing the interface in an in-
compatible way. Documentation for the current state of affairs is difficult to
come by, but this situation is likely to improve when the speed of development
slows down.

No error messages are given for data types for which DrIFT cannot generate
code. Error messages provided by Template Haskell are often in terms of the
generated code and difficult to interpret for the user of a generic programming
library.

4.5 Lightweight Approaches to Generic Programming

Due to Haskell’s advanced type language and type classes it is possible to
write generic programs in Haskell itself, without extending the language. An
approach in which generic programs are plain Haskell programs is called a light-
weight approach. Lightweight approaches to generic programming in Haskell
have become popular in the last couple of years. In this section we discuss three
relatively lightweight approaches to generic programming: “A Lightweight Imple-
mentation of Generics and Dynamics”, “Generics for the Masses”, and “Deriv-
able Type Classes”. The last approach is actually a language extension, but
since it shares many characteristics with the other two approaches, it is listed
here.

We do not include a comparison of some very recent lightweight approaches
to generic programming such as Replib [97], Smash your boiler-plate without
class and Typeable [59], and TypeCase [83]. Neither do we discuss PolyP2 here:
the subsection on PolyP discusses the main ideas behind PolyP.

126 R. Hinze, J. Jeuring, and A. Loh

Lightweight Implementation of Generics and Dynamics

Lightweight Implementation of Generics and Dynamics [I5] (LIGD) is an
approach to embedding generic functions and dynamic values into Haskell 98
augmented with existential types. For the purposes of these lecture notes we
concentrate on the generics (which slightly simplifies the presentation). For the
treatment of dynamics the interested reader is referred to the original paper [15]
or to the companion lecture notes on Generic Programming, Now!, which elab-
orate on a closely related approach to generic programming.

A generic function in Generic Haskell is parametrized by types, essentially
performing a dispatch on the type argument. The basic idea of the lightweight
approach is to reflect the type argument onto the value level so that the type-
case can be implemented by ordinary pattern matching. As a first try, we could,
for instance, assign the generic encode function the type Rep — t — [Bit], where
Rep is the type of type representations. A moment’s reflection, however, reveals
that this won’t work. The parametricity theorem [92] implies that a function of
this type necessarily ignores its second argument. The trick is to use a parametric
type for type representations: encode :: Rep t — t — [Bit]. Here Rep t is the type
representation of t. In this section we will show a number of ways in which such
a type can be defined.

Using a recent extension to Haskell, so-called generalized algebraic data types,
Rep can be defined directly in Haskell; see also Generic Programming, Now!
(Section 3.1 in [42], where Rep is called Type).

data Rep :: x — x where
Unit :: Rep Unit
Int ::RepInt
Sum :: Repa — Rep b — Rep (a :+: b)
Pair :: Repa — Rep b — Rep (a :*: b)

A type t is represented by a term of type Rep t. Note that the above declaration
cannot be introduced by a Haskell 98 data declaration since none of the data
constructors has result type Rep a.

If one wants to stick to Haskell 98 (or modest extensions thereof), one has to
encode the representation type somehow. We discuss a direct encoding in the
sequel and a more elaborate one in Section 5l The idea is to assign, for instance,
Int, the representation of Int, the type Rep t with the additional constraint
that t = Int. The type equality is then encoded using the equivalence type
a < b introduced in Section An element of t <> t' can be seen as a ‘proof’
that the two types are equal. Of course, in Haskell, an equivalence pair only
guarantees that t can be cast to t’ and vice versa. This, however, turns out to
be enough for our purposes. Figure [3] displays the fully-fledged version of Rep
that uses equivalence types. The constructors Unit, Int, Char, Sum, Pair and
Con correspond to the type patterns Unit, Int, Char, :+:, :*: and Con in Generic
Haskell. The constructor Type is used for representing user-defined data types;
see below.

Comparing Approaches to Generic Programming in Haskell 127

data Rep t = Unit (t < Unit)
| Int (t < Int)
| Char (t < Char)
| Vab.Sum (Rep a) (Rep b) (t < (a:+: b))
| Yab. Pair (Rep a) (Rep b) (t < (a :*: b))
| Va. Type (Repa) (t< a)
| Con String (Rep t)

Fig. 3. A type-representation type

In general, approaches to generics contain three components: code for generic
values, per data type code, and shared library code. In Generic Haskell and other
approaches the per data type code is not a burden upon the programmer but
is generated automatically. Here the programmer is responsible for supplying
the required definitions. (Of course, she or he may use tools such as DrIFT or
Template Haskell to generate the code automatically.) To see what is involved,
re-consider the List data type

data List a = Nil | Cons a (List a),

and recall that the structure type of List a is Unit :+: (a :*: (List a)). To turn
List a into a representable type, a type on which a generic function can be used,
we define

list :: Rep a— Rep (List a)
list a = Type ((Con "Nil" unit) + (Con "Cons" (a * (list a))))
(EP fromList toList),

where unit, + and * are smart versions of the respective constructors (defined
in the LIGD library) and fromList and toList convert between the type List and
its structure type.

fromList :: List a — Unit :+: (a :x: (List a))
fromList Nil = Inl Unit

fromList (Cons a as) = Inr (a *: as)

toList 2 Unit :+: (a »*: (List a)) — List a
toList (Inl Unit) = Nil

toList (Inr (a :*: as)) = Cons a as

Note that the representation of the structure type records the name of the con-
structors.

So, whenever we define a new data type and we intend to use a generic function
on that type, we have to do a little bit of extra work. However, this has to be
done only once per data type.

Function encode. The definition of encode is very similar to the Generic Haskell
definition.

128 R. Hinze, J. Jeuring, and A. Loh

encode :: Rept — t — [Bit]
encode (Unit ep) t = case from ep t of

Unit — []
encode (Char ep) t = encodeChar (from ep t)
encode (Int ep) t = encodelnt (from ep t)

encode (Sum a b ep) t = case from ep t of
Inl x — O :encode a x
Inry — I :encode by
encode (Pair a b ep) t = case from ep t of
x *x:y — encode a r H encode b y
encode (Type a ep) t = encode a (from ep t)
encode (Con s a) t = encode a t

The main difference is that we have to use an explicit cast, from ep, to turn the
second argument of type t into a character, an integer, and so forth. In Generic
Haskell this cast is automatically inserted by the compiler.

Function decode. For decode we have to cast an integer and values of other types
into an element of the result type t using to ep.

decodes ;2 Rep t — Parser t

decodes (Unit ep) bs = [(to ep Unit, bs)]

decodes (Char ep) bs = mapP (to ep) decodesChar bs

decodes (Int ep) bs = mapP (to ep) decodesInt bs

decodes (Sum a b ep) bs = bitCase (mapP (to ep . Inl) (decodes a))

(mapP (to ep . Inr) (decodes b))
bs
decodes (Pair a b ep) bs = [(to ep (z :*: y), ds)
| (z, cs) < decodes a bs
,(y, ds) < decodes b cs]
= mapP (to ep) (decodes a) bs
= decodes a bs

decodes (Type a ep)
decodes (Con s a)

A big plus of the lightweight approach is that encode and decode are ordinary
Haskell functions. We can, for instance, pass them to other functions or we can
define other functions in terms of them.

decode :: Rep a — [Bit] — a
decode a bs = case decodes a bs of

(2, [D] ==

— error "decode: no parse"

Function eq. The equality function is again very similar to the version in Generic
Haskell.

eq :: Rept -t — t — Bool
eq (Int ep) by toa = fromep t1 from ep to

Comparing Approaches to Generic Programming in Haskell 129

eq (Char ep) ty to = from ep t1 from ep to

eq (Unit ep) t to = case (from ep ty, from ep 1o) of
(Unit, Unit) — True

eq (Sum a b ep) t1 to = case (from ep by, from ep 1) of
(Inl a1, Inl a2) — eq a a1 a
(Inr by, Inr ba) — eq b by by

— False

eq (Pair a b ep) ty to = case (from ep ty, from ep 1o) of
(a1 % b1, az %2 bo) — eq a ay aa A\ eq b by bo

eq (Type a ep) t to = eq a (from ep 1) (from ep ty)

eq (Con s a) t to =eqat t

Function map. The function map abstracts over a type constructor of kind
* — «, or is indexed by kind as in Generic Haskell. Defining such a version of
map requires a different type representation. A discussion of the design space
can be found in the companion lecture notes on Generic Programming, Now!.

Function show. The implementation of show is again straightforward. The con-
structor names can be accessed using the Con pattern (an analogous approach
can be used for record labels).

shows 2 Rept — t — ShowS
shows (Int ep) t = showsInt (from ep t)
shows (Char ep)t = showsChar (from ep t)
shows (Unit ep) t = showString ""

shows (Sum a b ep) t = case from ep t of

Inl ay — shows a aq
Inr by — shows b by
shows (Pair a b ep) t = case from ep t of
(ay *: by) — shows a ay
- showString " "
- shows b by
shows (Type a ep) t shows a (from ep t)
shows (Con s (Unit ep)) t = showString s
shows (Con s a) t = showChar >
- showString s
- showChar ° 2
- shows a t
- showChar)’

Since types are reflected onto the value level, we can use the full convenience
of Haskell pattern matching. For instance, in the definition of shows we treat
nullary constructors in a special way (omitting parentheses) through the use of
the pattern Con s (Unit ep).

Function update. An implementation of update requires an extension of the
Rep data type, which means that one has to modify the source of the library.

130 R. Hinze, J. Jeuring, and A. Loh

Alternatively, one could turn Rep into a so-called open data type [72]. The code
for update is then entirely straightforward and omitted for reasons of space.

Derivable Type Classes

Haskell’s major innovation is its support for overloading, based on type classes.
For example, the Haskell Prelude defines the class Fq (slightly simplified):

class Fq a where
eq::a — a — Bool.

This class declaration defines an overloaded top-level function, called method,
whose type is

eq :: (Fqa) =a— a— Bool.

Before we can use eq on values of, say Int, we explain how to take equality over
Int values:

instance Fq Int where
eq = eqlnt.

This instance declaration makes Int an element of the type class Eq and says
‘the eq function at type Int is implemented by eqlnt’. As a second example
consider equality of lists. Two lists are equal if they have the same length and
corresponding elements are equal. Hence, we require equality over the element

type:

instance (Eq a) = FEq (List a) where

eq Nil Nil = True
eq Nil (Cons ag ass) = False
eq (Cons ay asy) Nil = False

eq (Cons a1 as1) (Cons az ass) = eq ay az N eq asy ass.

This instance declaration says ‘if a is an instance of Eq, then List a is an instance
of Eq, as well’.

Though type classes bear a strong resemblance to generic definitions, they do
not support generic programming. A type-class declaration corresponds roughly
to the type signature of a generic definition — or rather, to a collection of type
signatures. Instance declarations are related to the type cases of a generic de-
finition. The crucial difference is that a generic definition works for all types,
whereas instance declarations must be provided explicitly by the programmer
for each newly defined data type. There is, however, one exception to this rule.
For a handful of built-in classes Haskell provides special support, the so-called
‘deriving’ mechanism. For instance, if you define

data List a = Nil | Cons a (List a) deriving (Eq),

Comparing Approaches to Generic Programming in Haskell 131

then Haskell generates the ‘obvious’ code for equality. What ‘obvious’ means is
specified informally in an Appendix of the language definition [86]. Derivable
type classes (DTCs) [41] generalize this feature to arbitrary user-defined classes:
generic definitions are used to specify default methods so that the programmer
can define her own derivable classes.

Functions encode and decode. A type class usually gathers a couple of related
methods. For that reason, we put encode and decode into a single class, called
Binary.

class Binary a where
encode ::a — [Bit]
decodes :: Parser a

Using two generic definitions we provide default methods for both encode and
decode.

encode{Unit}} Unit =]

encode{b :+: c} (Inl) = O : encode x
encode{b +: c} (Inr y) = 1: encode y
encodedb :*: c} (z :*: y) = encode x H encode y

decodes{Unit[} bs = [(Unit, bs)]

decodes{b :+: c[} bs = bitCase (mapP Inl decodes)
(mapP Inr decodes)
bs

decodes{b :*: c[} bs = [(z :*: y,ds) | (z, cs) < decodes bs

, (y, ds) « decodes cs]

Incidentally, DTCs use the same structure-representation types as Generic Has-
kell, so the corresponding definitions can be copied almost verbatim. There is
one small difference though: explicit type arguments, written in curly braces,
are only specified on the left-hand side of default method definitions. Elsewhere,
Haskell’s overloading resolution automatically determines the instance types, as
for every other class method.

The function decode is defined in terms of decodes. We decided to turn the
latter function into an overloaded function rather than a class method since its
code is the same for all instances.

decode :: (Binary a) = [Bit] — a
decode bs = case decodes bs of

(@[N] — =

— error "decode: no parse"

Now, if we intend to use encode or decode on a particular type, we must first
provide an instance declaration. However, by virtue of the default methods the
instance declaration may be empty.

132 R. Hinze, J. Jeuring, and A. Loh

instance Binary CharList
instance Binary Tree
instance (Binary a) = Binary [a]

The compiler then automatically fills in the missing method definitions. However,
if we say

instance (Binary a) = Binary [a] where
encode xs = encode (length zs) H concatMap encode s
decodes bs = [(xs,ds) | (n,cs) « decodes bs
, (ws, ds) « times n decodes cs]

times :: Int — Parser a — Parser [a]
times 0 p bs =[([], bs)]
times (n+ 1) p bs = [(z : @s, ds) | (z, cs) < p bs, (zs,ds) «— times n p cs]

then this programmer-supplied code is used. Thus, the programmer can override
the generic definition on a type-by-type basis. This ability is crucial to support
abstract types. We can also — indeed, we must — use ordinary instance decla-
rations to specify what a generic definition should do on primitive types such as
Char or Int.

instance Binary Char where
encode = encodeChar
decodes = decodesChar

instance Binary Int where
encode = encodelnt
decodes = decodesInt

Function eq. The predefined Fq class can be thought of as a derivable type class.

class Fq a where

eq, neq ;> a— a — Bool
eq{Unit} Unit Unit = True
eq{lb:+:c[t (Inl z) (Inlv) =eqzv

eq{lb :+: c[} (Inl z) (Inr w) = False

eq{lb :+: c[} (Inr y) (Inlv) = False

eq{lb :+: c[t (Inr y) (Inr w) =eqy w
eq{lbx:clt (z % y) (vx w)=eqzvANeqgyw
neq x y = not (eq z y)

The class definition contains an ordinary default definition for inequality and a
generic one for equality. Equality on characters and integers is specified using
ordinary instance declarations.

instance Fq Char where
eq = eqChar

instance Fq Int where
eq = eqlnt

Comparing Approaches to Generic Programming in Haskell 133

Function map. Generic definitions for default methods may only be given for
type classes whose type parameter ranges over types of kind . For that reason,
we cannot specify a generic mapping function, There is, however, no principle
hindrance in adding this feature.

Function show. A missing feature of DTCs is a cof a construct, with which one
can access the names of constructors and labels. So, currently, one cannot define
a generic version of show or read.

Function update. We can define update as a variant of the generic identity, or
copy function.

class Update a where
update a—a
update{]Unit} Unit Unit
update{]b :+: cf} (Inl x) Inl (update x)
update{b +: c[} (Inr y) = Inr (update y)
update{lb :x: cf} (z :x: y)

update x *: update y

Again, we have to provide instance declarations for all the types, on which we
wish to use update.

instance Update Char where
update = id

instance (Update a) = Update |a]

instance Update Company

instance Update Dept

instance Update SubUnit

instance Update Employee

instance Update Person

instance Update Salary where
update (S s) =S (s * (14 0.15))

All the instance declarations are trivial except the one for salary which specifies
the salary increase.

Generics for the Masses

Generics for the Masses [35136] (GM) is similar in spirit to LIGD. The approach
shows that one can program generically within Haskell 98 obviating to some
extent the need for fancy type systems or separate tools. Like LIGD, Generics
for the Masses builds upon an encoding of the type-representation type Rep,
this time a class-based one. The details of the encoding are not relevant here;
the interested reader is referred to the journal paper [36].

134 R. Hinze, J. Jeuring, and A. Loh

Function encode. To define a generic function the generic programmer has to
provide a signature and an implementation. Rather unusually, the type of a
generic function is specified using a newtype declaration.

newtype Encode a = Encode{ applyEncode :: a — [Bit]}

We already know that the generic function encode cannot be a genuine polymor-
phic function of type a — [Bit]. Data compression does not work for arbitrary
types, but only for types that are representable, that is, where the type can be
represented by a certain value. Here a type representation is simply an over-
loaded value called rep. The first part of the generic compression function is
then given by the following definition.

encode :: (Rep a) = a — [Bit]
encode = applyEncode rep

Loosely speaking, we apply the generic function to the type representation rep.
Of course, this is not the whole story. The code above defines only a convenient
shortcut. The actual definition of encode is provided by an instance declaration,
but one should read it instead as just a generic definition.

instance Generic Encode where

unit = Encode (Az — [])

plus = Encode (A\x — case z of Inl | — O : encode |
Inr r — I : encode 1)

pair = Encode (Ax — encode (outl x) H# encode (outr x))

datatype descr iso

= Encode (Ax — encode (from iso x))
char = Encode (A\x — encodeChar 1)
int = FEncode (Ax — encodelnt)

Most of the cases are familiar — just read the method definitions as type cases.
To encode an element of an arbitrary data type, we first convert the element
into a sum of products, which is then encoded. That said it becomes clear that
GM uses the same structure types as Generic Haskell. The function from is the
record selector from of the data type - < - introduced in Section 2.2

That’s it, at least, as far as the generic function is concerned. Before we can
actually compress data to strings of bits, we first have to turn the types of the
to-be-compressed values into representable types. Consider as an example the
type of binary leaf trees.

data BinTree a = BTLeaf a | BTBin (BinTree a) (BinTree a)

We have to show that this type is representable. To this end we exhibit an
isomorphic type built from representable type constructors. This is the familiar
structure type of BinTree, denoted BinTree®.

type BinTree” a = (Constr a) :+: (Constr ((BinTree a) :*: (BinTree a)))

Comparing Approaches to Generic Programming in Haskell 135

The main work goes into defining two mappings, fromBinTree and toBinTree,
which certify that BinTree a and its structure type BinTree® a are indeed
isomorphic.

fromBinTree :: BinTree a — BinTree® a
fromBinTree (BTLeaf) = Inl (Con 1)
fromBinTree (BTBin 1) = Inr (Con (1 :*: 1))
toBinTree :: BinTree® a — BinTree a
toBinTree (Inl (Con z)) = BTLeaf z

toBinTree (Inr (Con (1 :*: 1)) = BTBin | r

The Con constructor just marks the position of the original data constructors
BTLeaf and BTBin. The isomorphism is then used to turn BinTree into a rep-
resentable type.

instance (Rep a) = Rep (BinTree a) where
rep = datatype ("BTLeaf"./1.|"BTBin"./2) -- syntax
(EP fromBinTree toBinTree) -- semantics

The operator ./ turns a constructor name and an arity into a constructor de-
scription, and the operator .| combines two alternatives into a data description,
see Figure @l The declaration rep specifies the syntax — name and arity of the
constructors — and the semantics — the structure — of the tree data type. Such a
declaration has to be provided once per data type and is used for all instances
of generic functions on that data type.

For reference, Figure @ lists the definition of the class Generic (g is the type
of a generic function).

Function decode. The definition of decodes follows exactly the same scheme.

newtype Decodes a = Decodes{ applyDecodes :: Parser a}

decodes :: (Rep a) = Parser a
decodes = applyDecodes rep

instance Generic Decodes where

unit = Decodes (Abs — [(Unit, bs)])

plus = Decodes (Abs — bitCase (mapP Inl decodes)
(mapP Inr decodes)
bs)

pair = Decodes (A\bs — [(x *: y, ds) | (z, cs) < decodes bs

, (y, ds) < decodes cs])
datatype descr iso
= Decodes (Abs — mapP (to iso) decodes bs)
char = Decodes (Abs — decodesChar bs)
int = Decodes (Abs — decodesInt — bs)

It is worth noting that Haskell’s overloading resolution automatically determines
the instance types: we just call decodes rather than decodes{t[}.

136 R. Hinze, J. Jeuring, and A. Loh

class Generic g where

unit :: g Unit
plus 2 (Rep a, Rep b) = g (a:+: b)
pair :: (Rep a, Rep b) = g (a:x: b)
datatype :: (Rep a) = DataDescr —a«— b —gb
char : g Char
mnt :: g Int
list :t (Rep a) = g [a]
constr :: (Rep a) = g (Constr a)
list = datatype ("[1"./0.|":"./2) (EP fromList toList)
constr = datatype ("Con" ./ 1) (EP arg Con)
data DataDescr = NoData
| ConDescr{name :: String, arity :: Int}
| Alt {getl :: DataDescr, getr :: DataDescr}
infix 2./
infixr 1 .|
f./n = ConDescr{name = f, arity = n}
di .| do = Alt {getl = di,getr =do}

newtype Constr a = Con{arg ::a}

Fig. 4. The class Generic

The function decode can easily be defined in terms of decodes.

decode :: (Rep a) = [Bit] — a
decode a bs = case decodes a bs of

[(z,[D] ==

— error "decode: no parse"

Note that the class context only records that decode depends on some generic
function. This is in sharp contrast to DTC where the context precisely records,
on which overloaded function(s) decode depends: (Binary a) = [Bit] — a.

Function eq. The definition of eq is straightforward.

newtype Equal a = Fqual{ applyEqual :: a — a — Bool }
eq :: (Rep a) = a — a — Bool
eq = applyFEqual rep
instance Generic Equal where
unit = FEqual (Ax; 20 — True)
plus = Equal (Az; 22 — case (1, 22) of
(Inl a1, Inl a3) — eq ay ag
(Inr by, Inr b)) — eq by by
— Fualse)

pair = Equal (Az; 22 — eq (outl 1) (outl z2) A eq (outr x1) (outr x3))
datatype descr iso

Comparing Approaches to Generic Programming in Haskell 137

= Fqual (Ax1 22 — eq (from iso x1) (from iso z2))
char = Equal (Axy 22 — 21 22)
int = FEqual (A\x1 20 — 11 1)

Function map. The function map cannot be defined using the Generic class
that we have employed for encode and decode. Rather, we need a new tailor-
made class Generic2 that allows us to define generic functions whose type is
parametrized by two type arguments (see Section [ZI]). The definition is then
very similar to what we have seen before.

newtype Map a1 ax = Map{ applyMap :: a1 — az}
instance Generic2 Map where
unit = Map (\z — x)
plus a b = Map (Ax — case z of Inl I — Inl (applyMap a l)
Inr r — Inr (applyMap b r))
pair a b = Map (A\x — applyMap a (outl z) *: applyMap b (outr x))
datatype is01 1502 a
= Map (A\x — to isoa (applyMap a (from isoq x)))
char = Map (A\z — z)
int = Map (\z — x)

Using frep, the representation of types of kind x — , we can define a generic
version of Haskell’s frap.

fmap ::(FRepf) = (a; — ap) — (fa; — f ap)
fmap f = applyMap (frep (Map [))

Function show. To implement show we have to access the syntax of data con-
structors. To this end, we extend shows’ by an additional argument of type
DataDescr that provides information about the syntax of the to-be-printed value.
This argument is initialized to NoData, because initially we have no information.

shows :: (Rep a) = a — ShowS
shows = shows’ NoData

In the datatype case, which signals that the current argument is an element
of some data type, we use the first argument of datatype as the new syntax
description.

newtype Shows’ a = Shows’{ applyShows’ :: DataDescr — a — ShowS}
shows’ :: (Rep a) = DataDescr — a — ShowS

shows” = applyShows’ rep

instance Generic Shows’ where

unit — Shows’ ()\d T — ShOU)St?"’iTLQ " n)
plus = Shows’ (Ad © — case x of Inl | — shows’ (getl d) 1

138 R. Hinze, J. Jeuring, and A. Loh

Inr r — shows’ (getr d) r)
pair = Shows’ (\d © — shows (outl)
- showChar >
- shows (oulr z))

char = Shows’ (Ad & — showsChar x)
int = Shows' (A\d x — showsInt x)
list = Shows’ (Ad © — showsl shows x)
datatype descr iso

= Shows’ (Ad & — shows’ descr (from iso x))
constr = Shows' (Ad z — if arity d 0 then
showString (name d)
else
showChar > (° - showString (name d)
- showChar * ? - shows (arg z)
- showChar *))

The implementation of shows’ has a special case for lists which are converted to
Haskell list syntax, with brackets and commas. The helper function showsl does
the main work.

showsl :: (a — ShowS) — ([a] — ShowS)

showsl p [] = showString "[1"
showsl p (a: as) = showChar > [’ - p a - rest as
where rest [] = showChar °1°’

rest (z : xs) = showChar > ,’ - p x - rest xs

Function update. An implementation of update requires an extension of the
class Generic, which means that one has to modify the source of the library. An
alternative approach based on subclasses is described in a recent paper [84].

Evaluation

Structural dependencies. All lightweight approaches support the definition of
functions in the style of Generic Haskell. Type-indexed data types are out of
reach.

Using a different representation type in LIGD we can also define generic func-
tions that are indexed by first- or higher-order kinds (this is not detailed in the
original paper).

GM supports the definition of generic functions on types and type construc-
tors. For each brand of generic functions a tailor-made Generic class must be
used. Because of the class-based encoding the code looks somewhat different to
that of Generic Haskell. The difference is, however, only superficial.

Full reflexivity. LIGD is in principle fully reflexive. However, to support types
of arbitrary ranks, rank-n types are required.

Comparing Approaches to Generic Programming in Haskell 139

GM is not fully reflexive: for different kinds we need different type represen-
tations. But it is possible to construct a family of incompatible GM implemen-
tations. Rank-n types are required in order to support types of higher kinds.
Furthermore, if one wants to use the convenience of the Rep class, one addition-
ally needs higher-order contexts; see the evaluation of SYB.

DTGCs also share the limitations of class-based systems: higher-order contexts
are needed to apply generic functions to higher-kinded data types such as GRose.

Type universes. By changing the classes for type representations used in LIGD
and GM other type universes can be introduced and used. Since type represen-
tations are given by the user, they are very flexible.

DTCs support default cases, but otherwise the type universe is fixed.

First-class generic functions. In LIGD, a generic function is an ordinary poly-
morphic Haskell function of type Rep t — Poly t. As such it is first-class,
assuming that rank-n functions are supported.

Similarly, in GM a generic function is an ordinary polymorphic Haskell func-
tion of type (Rep t) = Poly t. Again, in a language with rank-n types, generic
functions are first-class citizens.

In DTCs, generic functions are tied to class methods. However, type classes
are not first-class citizens. Consequently, generic functions are not first class
either.

Multiple type arguments. In both LIGD and GM a generic function may have
multiple type arguments. Derivable type classes may only abstract over a single
type argument.

Type system. All approaches are fully integrated into Haskell’s type system.

Type safety. All approaches are fully type-safe. A missing type-case in LIGD,
however, only generates a warning at compile-time. Depending on the complexity
of the ‘type’ patterns it may not be detected at all (in particular, if patterns
are used in conjunction with guards). In this case, we get a pattern-matching
failure at run-time. In GM a missing case branch issues a warning at compile-
time (about a missing method). Since instance declaration must be explicitly
provided, missing instances in DTCs are detected at compile-time.

The type of a generic function. The types are intuitive; we only have to prefix
a ‘Rep t —’ argument or a ‘(Rep t) =’ context for LIGD and GM, respectively.
The types of member functions of DTCs are familiar to Haskell programmers.

Properties of generic functions. For all approaches, properties of a generic func-
tion can be stated and proven as in Generic Haskell.

Integration with the underlying programming language. All approaches are fully
integrated into Haskell. For DTCs, only the module Data.Generics need be
imported and the options -fglasgow-exts and -fgenerics must be passed to
the GHC.

140 R. Hinze, J. Jeuring, and A. Loh

In LIGD and GM the user has to specify the structure representation type
and the embedding-projection pair between the data type and the structure
representation type for every data type on which generic functions are used.

In DTCs, a generic function ¢, implemented in the class G, can be used on a
data type t by writing instance G t. No other data-type-specific code is needed.

Specialization versus interpretation. Representations of types are passed and
analyzed at run-time in LIGD. A generic function can be seen as an interpreter.
In GM, instances of generic functions are assembled at compile-time. In DTCs,
generic code is specialized for each instance.

Code optimization. In LIGD, the run-time passing of type representations incurs
a small overhead compared to Generic Haskell. For GM and DTCs the overhead
is similar to that of Generic Haskell. The code quality possibly depends a bit
more on GHC’s optimizer.

Separate compilation. All approaches support separate compilation.

Practical aspects. The implementation of LIGD consists of a few dozen lines of
code (see Appendix A of the original paper), so it can be easily integrated into
one’s programs and also be adapted to one’s needs (for instance, if additional
type cases are required).

GM comprises three major implementations of generics and a few variations.
The approach is extremely light weight; each implementation consists of roughly
two dozen lines of Haskell code. It is less suited as a library (unless one makes
do with the predefined type cases), but it can easily be adapted to one’s needs.

The original DTCs proposal is partially implemented in GHC, the most popu-
lar compiler for Haskell. Names of constructors and labels cannot be accessed in
DTCs, so one cannot define a generic version of show or read. The documenta-
tion is integrated into GHC’s user guide (Section 7.11, “Generic classes”). Error
messages are usually good.

5 Conclusions and Future Work

In this section we draw conclusions from the evaluations in the previous sec-
tion. Using these conclusions, we try to answer the question we posed in the
introduction of these lecture notes: ‘How do you choose between the different
approaches to generic programming in Haskell?” This question is a bit similar to
the question how you choose a programming language for solving a programming
problem. Answers to this question usually contain ‘religious’ aspects. We try to
avoid religion as much as possible, and answer the question in two ways. First,
we summarize the evaluations of the previous section, and draw conclusions
about the suitability of the different approaches for different generic program-
ming concepts. Second, to end on a positive note, for each approach we try to
give arguments why you would use it. Furthermore, we describe future work.

Comparing Approaches to Generic Programming in Haskell 141

5.1 Suitability for Generic Programming Concepts

Figure [} shows the results of our evaluations of the different approaches to
generic programming in Haskell. Such a presentation does not offer the possibil-
ity to make subtle distinctions, but it does give an overview of the evaluation
results. We use the following categories in this table:

++ : satisfies (almost) all requirements.
satisfies the requirements except for some small details.
satisfies a number of requirements.

- @ satisfies just a few of the requirements.

-- : does not satisfy the requirements.

The results are obtained by an informal translation of our evaluations into points
on this five-point scale.

Structure Completeness Safe Info Integration Tools

GH ++ + ++ ++ ++ +
Clean o ++ ++ ++ +
PolyP o - + + + -

SYB o + ++ + ++ +
DrIFT + o - - + +

TH + + - - ++ o
LIGD o + ++ ++ ++ +

GM o + ++ ++ ++ +
DTCs o o ++ ++ ++ +

Fig. 5. Evaluation results for approaches to generic programming

Structure in programming languages. Generic Haskell allows the definition of
type-indexed functions with kind-indexed types, and type-indexed data type
with kind-indexed kinds. Since DrIFT and Template Haskell can generate any-
thing, they can also be used to generate type-indexed types. There is no support
(library, predefined constructs) for doing so, however. The other approaches only
allow the definition of type-indexed functions.

The type completeness principle. No approach truly satisfies the type complete-
ness principle.

SYB, GM, and DTCs suffer from the fact that higher-order contexts (not
implemented in Haskell) are needed to generate instances of generic functions on
higher-kinded data types. On the other hand, both SYB and GM allow higher-
order generic functions. Just as with classes, DTCs cannot represent higher-
order generic functions. Furthermore, DTCs cannot access constructor names,
which limits their usability a bit. LIGD allows higher-order generic functions

142 R. Hinze, J. Jeuring, and A. Loh

and generic functions on almost all data types definable in Haskell. However,
it is impossible to define the generic map function in LIGD and SYB. GM
allows higher-order generic functions, and the definition of generic map, but
needs different classes for different brands of generic functions.

Generic Haskell and Clean do not offer higher-order generic functions, but
generic functions work on almost any data type definable in the underlying
programming language, and defining the generic map function is no problem.
Higher orders do not really play a role in DrIFT and Template Haskell, and
DrIFT cannot handle higher-kinded data types. PolyP does not allow higher-
order generic functions either and only works for regular data types of kind
* = %k,

Generic views in Generic Haskell allow defining generic functions for different
views on data types, which can be used to specify different type universes. LIGD
and GM allow very flexible sets of types on which generic functions can be
defined, and it is possible to define many type universes. Clean, PolyP, SYB,
and DTCs have a fixed type universe. DrIFT and Template Haskell offer no
support for type universes.

Well-typed expressions do not go wrong. Generic Haskell, Clean, SYB, LIGD,
GM, and DTCs are type safe. PolyP does not complain about undefined arms,
but otherwise type checks generic functions. DrIFT offers no safety at all: a gen-
erated document can represent a completely bogus program. Template Haskell
offers very limited safety: splicing in code may lead to type errors.

Information in types. In Generic Haskell, Clean, PolyP, and LIGD types of
generic functions generally correspond to intuition, and there exists a theory
of generic functions by means of which properties for generic functions can be
proved. Proving properties of generic functions in SYB is hard because they
rely on properties of, possibly user-defined, instances of the classes Data and
Typeable.

In DrIFT all rules have the same type, namely Data — Doc, and it is virtually
impossible to prove anything about the functions represented by the documents.
The same holds for Template Haskell, although libraries for generic programming
defined in Template Haskell may allow to state and prove properties.

Integration with the underlying programming language. Generic Haskell, Clean,
SYB, Template Haskell, LIGD, GM, and DTCs are fully integrated with the
underlying programming language, where Clean, SYB, Template Haskell, LIGD,
GM, and DTCs don’t even need a separate compiler. PolyP can only deal with a
subset of Haskell. DrIFT has to be recompiled if a new generic function is added
to the rules.

To use a generic function on a new data type, almost no work is required in
Generic Haskell, Clean, PolyP, SYB, DrIFT, Template Haskell, and DTCs. In
the lightweight approaches LIGD and GM the structure representation type and
the embedding-projection pair between the structure representation type and
the original data type have to be supplied.

Comparing Approaches to Generic Programming in Haskell 143

Tools. Generic Haskell, LIGD, GM, and DTCs do not do any optimization on the
generic code, but otherwise provide good error messages. Clean does optimize
the generated code, but provides no error messages. PolyP is not very actively
maintained anymore. SYB is shipped as a library of GHC, and is fully supported.
The latest versions of SYB have not been included yet in GHC, which means
that the current version still suffers from some of the limitations of previous
versions of SYB, in particular the limitation that generic functions cannot be
extended. DrIFT is maintained, but also provides no error messages. Template
Haskell is maintained, but the documentation is outdated, and error messages
are not always very helpful.

5.2 Why Would I Use This Approach?

— Use Generic Haskell if you want to experiment with type-indexed functions
with kind-indexed types and/or type-indexed data types, in particular if you
want to play with higher-kinded and/or nested data types. Generic Haskell
is probably the most expressive generic programming extension of Haskell.
A disadvantage of using Generic Haskell is that the generated code contains
quite a number of mappings from data types to structure types and back
again, and hence not as efficient as hand-written code might be.

— Use Clean if you want to use an approach to generic programming that is sim-
ilar to Generic Haskell, is fully integrated into its underlying programming
language, and generates nearly optimal code for generic functions. Clean does
not support the advanced features of Generic Haskell such as dependencies,
type-indexed data types, and default cases.

— Use PolyP if you want to define generic functions that use the recursive
structure of data types, such as a generalization of the foldr function on
lists, the catamorphism. Remember that PolyP only generates code for data
types of kind x — *.

— Use Scrap Your Boilerplate if you want to manipulate a value of a large
abstract syntax at a particular place in the abstract syntax, and if you want
to have an approach to generic programming that is fully integrated in the
underlying programming language.

— Use DrIFT if you want a lot of flexibility in the way you generate code, or
if you want to format the code you generate in a particular way. Make sure
you don’t generate code on higher-kinded data types.

— Use Template Haskell if you want to experiment with different implementa-
tions of generic programming styles.

— Use the LIGD approach if you want to use a simple but expressive library
for generic programming, and your generic functions don’t have to work on
many different data types.

— Use Generics for the Masses if you want a fully Haskell 98 compatible library
that supports generic programming.

— Use Derivable Type Classes if you want (limited) Generic Haskell like generic
programming functionality fully integrated into the underlying programming
language. DTCs don’t support type-indexed data types, or higher-kinded
data types.

144 R. Hinze, J. Jeuring, and A. Loh

We distinguished three related groups between the nine approaches to generic
programming in Haskell described in these lecture notes:

— Generic Haskell and Clean.

— DrIFT and TH.

— Lightweight approaches: Lightweight Generics and Dynamics, Generics for
the Masses, and Derivable Type Classes.

PolyP and SYB form their own subcategories (but we might have placed PolyP2
in the lightweight approaches). The difference between Generic Haskell and Clean
is that Generic Haskell is more expressive and provides more features, whereas
Clean produces better code. The various lightweight approaches can be com-
pared as follows. GM and DTCs use classes for defining generic functions, so
higher-kinded data types are out of reach for these approaches. DTCs auto-
matically generate the conversion functions for instances of generic functions,
something that has to be done by hand for LIGD and GM. Also, DTCs allow to
extend generic functions with new, type-specific cases without modifying already
existing code.

5.3 Future Work

These lecture notes only compare approaches to generic programming in Haskell.
The only approaches to generic programming in Haskell we have not addressed
are Strafunski, Generic Programming, Now!, and several other new lightweight
approaches which have appeared only very recently (after the first drafts of these
lecture notes were written). Strafunski is rather similar to SYB, but has a more
combinator-like, point-free flavor. Generic Programming, Now! is described at
length, including a comparison to other approaches, in this volume.

We have yet to perform the same exercise for approaches to generic program-
ming in different programming languages.

Acknowledgements. We thank the participants of the 61st IFIP WG 2.1 meeting
for their comments on a presentation about this work. The participants of the
Spring School on Datatype-Generic Programming, Nottingham, April 2006 also
provided a number of useful suggestions. Jeremy Gibbons, Patrik Jansson, and
Ralf Lammel carefully read a previous version of this paper, and suggested many
improvements.

References

1. Achten, P., van Eekelen, M., Plasmeijer, R.: Generic Graphical User Interfaces.
In: Trinder, P., Michaelson, G.J., Pena, R. (eds.) IFL 2003. LNCS, vol. 3145, pp.
152-167. Springer, Heidelberg (2004)

2. Alimarine, A.: Generic Functional Programming - Conceptual Design, Implemen-
tation and Applications. PhD thesis, University of Nijmegen, The Netherlands
(2005)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Comparing Approaches to Generic Programming in Haskell 145

Alimarine, A., Plasmijer, R.: A generic programming extension for Clean. In:
Arts, T., Mohnen, M. (eds.) IFL 2002. LNCS, vol. 2312, pp. 168-186. Springer,
Heidelberg (2002)

Alimarine, A., Smetsers, S.: Optimizing generic functions. In: Kozen, D. (ed.)
MPC 2004. LNCS, vol. 3125, pp. 16-31. Springer, Heidelberg (2004)

Alimarine, A., Smetsers, S.: Improved fusion for optimizing generics. In:
Hermenegildo, M.V., Cabeza, D. (eds.) Practical Aspects of Declarative Lan-
guages. LNCS, vol. 3350, pp. 203-218. Springer, Heidelberg (2005)

Altenkirch, T., McBride, C.: Generic programming within dependently typed pro-
gramming. In: Gibbons and Jeuring [27] , pp. 1-20

Atanassow, F., Clarke, D., Jeuring, J.: Scripting XML with Generic Haskell. In:
Proceedings of the 7th Brazilian Symposium on Programming Languages, SBLP
2003, An extended version of this paper appears as ICS, Utrecht University, tech-
nical report UU-CS-2003-023 (2003)

Atanassow, F., Jeuring, J.: Customizing an XML-Haskell data binding with
type isomorphism inference in Generic Haskell. Science of Computer Program-
ming 65(2), 72-107 (2007)

Augustsson, L.: Cayenne — a language with dependent types. In: Proceedings of
the ACM SIGPLAN International Conference on Functional Programming, ICFP
1998, pp. 239-250. ACM Press, New York (1998)

Backhouse, R., Gibbons, J.: The EPSRC project on Datatype-Generic Program-
ming (2003-2006), http://web.comlab.ox.ac.uk/oucl/research/pdt/ap/dgp/
Benke, M., Dybjer, P., Jansson, P.: Universes for generic programs and proofs in
dependent type theory. Nordic Journal of Computing 10(4), 265-289 (2003)
Bird, R., Meertens, L.: Nested datatypes. In: Jeuring, J. (ed.) MPC 1998. LNCS,
vol. 1422, pp. 52-67. Springer, Heidelberg (1998)

Bird, R., Paterson, R.: Generalised folds for nested datatypes. Formal Aspects of
Computing 11(2), 200222 (1999)

Chen, J., Appel, A.W.: Dictionary passing for polytypic polymorphism. Technical
Report TR-635-01, Princeton University (2001)

Cheney, J., Hinze, R.: A lightweight implementation of generics and dynamics.
In: Chakravarty, M. (ed.) Haskell ’02. Proceedings of the 2002 ACM SIGPLAN
workshop on Haskell, pp. 90-104. ACM Press, New York (2002)

Clarke, D., Loh, A.: Generic Haskell, specifically. In: Gibbons and Jeuring [27],
pp. 21-48

Clavel, M., Duran, F., Marti-Oliet, N.: Polytypic programming in Maude. In:
Workshop on Rewriting Logic and its Applications 2000 (2000)

Cockett, R., Fukushima, T.: About Charity. Yellow Series Report No. 92/480/18,
Dep. of Computer Science, Univ. of Calgary (1992)

Crary, K., Weirich, S., Morrisett, J.G.: Intensional polymorphism in type-erasure
semantics. In: Proceedings of the ACM SIGPLAN International Conference on
Functional Programming, ICFP 1998, pp. 301-312. ACM Press, New York (1998)
Demers, A., Donahue, J., Skinner, G.: Data types as values: polymorphism, type-
checking, encapsulation. In: Conference Record of POPL ’78: The 5th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp.
23-30. ACM Press, New York (1978)

Dubois, C., Rouaix, F., Weis, P.: Extensional polymorphism. In: Conference
Record of POPL ’95: The 22nd ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pp. 118-129 (1995)

Furuse, J.: Generic polymorphism in ML. In Journées Francophones des Langages
Applicatifs (January 2001)

http://web.comlab.ox.ac.uk/oucl/research/pdt/ap/dgp/

146

23

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

R. Hinze, J. Jeuring, and A. Loh

Garcia, R., Jarvi, J., Lumsdaine, A., Siek, J.G., Willcock, J.: A comparative study
of language support for generic programming. In: OOPSLA ’03: Proceedings of the
18th annual ACM SIGPLAN conference on Object-oriented programing, systems,
languages, and applications, pp. 115-134. ACM Press, New York (2003)
Gibbons, J.: Patterns in datatype-generic programming. In: Striegnitz, J., Davis,
K. (eds.) Multiparadigm Programming. John von Neumann Institute for Com-
puting (NIC), First International Workshop on Declarative Programming in the
Context of Object-Oriented Languages (DPCOOL), vol. 27, pp. 277-289 (2003)
Gibbons, J.: Datatype-generic programming. In: Backhouse, R., Gibbons, J.,
Hinze, R., Jeuring, J. (eds.) Generic Programming, Advanced Lectures. LNCS,
vol. 4719, pp. 1-71. Springer, Heidelberg (2006)

Gibbons, J.: Metamorphisms: Streaming representation-changers. Science of Com-
puter Programming 65(2), 108-139 (2007)

Gibbons, J., Jeuring, J.: Generic Programming. IFIP, vol. 243. Kluwer Academic
Publishers, Dordrecht (2003)

Gibbons, J., Paterson, R.: Parametric datatype-genericity. Unpublished manu-
script (2006)

Hagg, P.: A framework for developing generic XML Tools. Master’s thesis, De-
partment of Information and Computing Sciences, Utrecht University (2002)
Harper, R., Morrisett, G.: Compiling polymorphism using intensional type analy-
sis. In: Conference Record of POPL ’95: The 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 130-141 (1995)
Hinze, R.: A generic programming extension for Haskell. In: Meijer, E. (ed.) Pro-
ceedings of the Third Haskell Workshop, Technical report of Utrecht University,
UU-CS-1999-28 (1999)

Hinze, R.: Functional pearl: Perfect trees and bit-reversal permutations. Journal
of Functional Programming 10(3), 305-317 (2000)

Hinze, R.: Generic Programs and Proofs. Habilitationsschrift, Bonn University
(2000)

Hinze, R.: Polytypic values possess polykinded types. Science of Computer Pro-
gramming 43(2-3), 129-159 (2002)

Hinze, R.: Generics for the masses. In: Proceedings of the ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP 2004, pp. 236-243. ACM
Press, New York (2004)

Hinze, R.: Generics for the masses. Journal of Functional Programming 16, 451—
482 (2006)

Hinze, R., Jeuring, J.: Generic Haskell: applications. In: Backhouse, R., Gibbons,
J. (eds.) Generic Programming. LNCS, vol. 2793, pp. 57-97. Springer, Heidelberg
(2003)

Hinze, R., Jeuring, J.: Generic Haskell: practice and theory. In: Backhouse, R.,
Gibbons, J. (eds.) Generic Programming. LNCS, vol. 2793, pp. 1-56. Springer,
Heidelberg (2003)

Hinze, R., Jeuring, J., Loh, A.: Type-indexed data types. Science of Computer
Programming 51(1-2), 117-151 (2004)

Hinze, R., Jeuring, J., Loh, A.: Comparing Approaches to Generic Programming
in Haskell. Technical Report UU-CS-2006-022, Utrecht University (2006)

Hinze, R., Jones, S.P.: Derivable type classes. In: Hutton, G. (ed.) Proceedings of
the 4th Haskell Workshop (2000)

Hinze, R., Loh, A.: Generic programming, now! In: Backhouse, R., Gibbons, J.,
Hinze, R., Jeuring, J. (eds.) Datatype-Generic Programming, Advanced Lectures.
LNCS, vol. 4719, Springer, Heidelberg (2006)

43.

44.

45.

46.
47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

Comparing Approaches to Generic Programming in Haskell 147

Hinze, R., Loh, A.: Scrap Your Boilerplate revolutions. In: Uustalu, T. (ed.) MPC
2006. LNCS, vol. 4014, pp. 180-208. Springer, Heidelberg (2006)

Hinze, R., Loh, A., Oliveira, B.C.d.S.: Scrap Your Boilerplate reloaded. In:
Wadler, P., Hagiya, M. (eds.) FLOPS 2006. LNCS, vol. 3945, Springer, Heidelberg
(2006)

Holdermans, S., Jeuring, J., Loh, A., Rodriguez, A.: Generic views on data types.
In: Uustalu, T. (ed.) MPC 2006. LNCS, vol. 4014, pp. 209-234. Springer, Heidel-
berg (2006)

Huet, G.: The zipper. Journal of Functional Programming 7(5), 549-554 (1997)
Hughes, J.: The design of a pretty-printing library. In: Jeuring, J., Meijer, E.
(eds.) Advanced Functional Programming. LNCS, vol. 925, pp. 53-96. Springer,
Heidelberg (1995)

Jansson, P., Jeuring, J.: PolyP — a polytypic programming language extension. In:
Conference Record of POPL ’97: The 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pp. 470-482. ACM Press, New York
(1997)

Jansson, P., Jeuring, J.: PolyLib - a polytypic function library. In: Workshop on
Generic Programming, Marstrand (June 1998)

Jansson, P., Jeuring, J.: Polytypic data conversion programs. Science of Computer
Programming 43(1), 35-75 (2002)

Jansson, P.; Jeuring, J.: students of the Utrecht University Generic Program-
ming class. In: Horvath, Z. (ed.) Testing properties of generic functions. Pro-
ceedings 18th International Symposium on Implementation and Application of
Functional Languages, IFL’06. LNCS, vol. 4449, Springer, Heidelberg (2007)
Barry Jay, C.: Programming in FISh. International Journal on Software Tools for
Technology Transfer 2, 307-315 (1999)

Barry Jay, C.: Distinguishing data structures and functions: the constructor cal-
culus and functorial types. In: Abramsky, S. (ed.) TLCA 2001. LNCS, vol. 2044,
pp. 217-239. Springer, Heidelberg (2001)

Barry Jay, C.: The pattern calculus. ACM Trans. Program. Lang. Syst. 26(6),
911-937 (2004)

Barry Jay, C., Kesner, D.: Pure pattern calculus. In: Sestoft, P. (ed.) ESOP 2006
and ETAPS 2006. LNCS, vol. 3924, Springer, Heidelberg (2006)

Barry Jay, C., Bellé, G., Moggi, E.: Functorial ML. Journal of Functional Pro-
gramming 8(6), 573-619 (1998)

Jeuring, J., Jansson, P.: Polytypic programming. In: Launchbury, J., Meijer, E.,
Sheard, T. (eds.) Advanced Functional Programming. LNCS, vol. 1129, pp. 68—
114. Springer, Heidelberg (1996)

Jeuring, J., Plasmeijer, R.: Generic programming for software evolution. In: In-
formal proceedings of the ERCIM workshop on Software Evolution (2006)
Kiselyov, O.: Smash your boiler-plate without class and Typeable, Published on
the Haskell mailing list (2006)

Koopman, P., Alimarine, A., Tretmans, J., Plasmeijer, R.: Gast: Generic Auto-
mated Software Testing. In: Pena, R., Arts, T. (eds.) IFL 2002. LNCS, vol. 2670,
Springer, Heidelberg (2003)

Lammel, R., Peyton Jones, S.: Scrap your boilerplate: a practical approach to
generic programming. ACM SIGPLAN Notices 38(3), 26-37 (2003)

Lammel, R., Peyton Jones, S.: Scrap your boilerplate with class: extensible generic
functions. In: Proceedings of the ACM SIGPLAN International Conference on
Functional Programming, ICFP 2005, pp. 204-215. ACM Press, New York (2005)

148

63

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

4.

75.

76.

7.

78.

79.

80.

81.

R. Hinze, J. Jeuring, and A. Loh

. Lammel, R., Meijer, E.: Revealing the X/O impedance mismatch. In: Backhouse,
R., Gibbons, J., Hinze, R., Jeuring, J. (eds.) Datatype-Generic Programming,
Advanced Lectures. LNCS, vol. 4719, Springer, Heidelberg (2006)

Lammel, R., Peyton Jones, S.: Scrap more boilerplate: reflection, zips, and gener-
alised casts. In: Proceedings of the ACM SIGPLAN International Conference on
Functional Programming, ICFP 2004, pp. 244-255. ACM Press, New York (2004)
Lammel, R., Visser, J.: Typed Combinators for Generic Traversal. In: Krishna-
murthi, S., Ramakrishnan, C.R. (eds.) PADL 2002. LNCS, vol. 2257, pp. 137-154.
Springer, Heidelberg (2002)

Lang, B.: Threshold evaluation and the semantics of call by value, assignment
and generic procedures. In: Conference Record of POPL ’77: The 4th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp.
227-237. ACM Press, New York (1977)

Lehman, M.M.: Programs, life cycles and the laws of software evolution. Proc.
IEEE 68(9), 1060-1078 (1980)

Lehman, M.M., Belady, L.A.: Program Evolution: Processes of Software Change.
Academic Press, London (1985)

Lieberherr, K.J.: Adaptive Object-Oriented Software: The Demeter Method with
Propagation Patterns. PWS Publishing Company, Boston (1996)

Loh, A.: Exploring Generic Haskell. PhD thesis, Utrecht University (2004)

Loh, A., Clarke, D., Jeuring, J.: Dependency-style Generic Haskell. In: Shivers, O.
(ed.) Proceedings of the ACM SIGPLAN International Conference on Functional
Programming, ICFP 2003, pp. 141-152. ACM Press, New York (2003)

Loh, A., Hinze, R.: Open data types. In: Maher, M. (ed.) Proceedings of the 8th
ACM-SIGPLAN International Symposium on Principles and Practice of Declar-
ative Programming, PPDP’06 (2006)

Loh, A., Jeuring, J.(eds.). The Generic Haskell user’s guide, Version 1.42 - Coral
release. Technical Report UU-CS-2005-004, Utrecht University (2005)

Lynagh, I.: Typing Template Haskell: Soft Type (August 2004),
http://web.comlab.ox.ac.uk/oucl/work/ian.lynagh/papers/

Typing Template Haskell: Soft Types.ps

Malcolm, G.: Data structures and program transformation. Science of Computer
Programming 14, 255-279 (1990)

McBride, C.: Epigram: practical programming with dependent types. In: Vene, V.,
Uustalu, T. (eds.) AFP 2004. LNCS, vol. 3622, pp. 130-170. Springer, Heidelberg
(2005)

Milner, R.: A theory of type polymorphism in programming. Journal of Computer
and Systems Sciences 17, 348-375 (1978)

Moggi, E., Belle, Barry Jay, C.: Monads, shapely functors and traversals. In:
Hoffman, M., Pavlovi¢, Rosolini, P. (eds.) Proceedings of the 8th Conference on
Category Theory and Computer Science, CTCS’99. Electronic Lecture Notes in
Computer Science, vol. 24, pp. 265-286. Elsevier, Amsterdam (1999)

Musser, D.R., Derge, G.J., Saini, A.: STL Tutorial and Reference Guide, Sec-
ond Edition: C++ Programming with the Standard Template Library, 2"¢ edn.
Addison-Wesley, Reading (2001)

Nogueira, P.: Context-parametric polykinded types. In: Hinze, R. (ed.) Proceed-
ings of the of the ACM SIGPLAN Workshop on Generic Programming 2006, pp.
45-54. ACM Press, New York (2006)

Norell, U., Jansson, P.: Polytypic programming in Haskell. In: Trinder, P.,
Michaelson, G.J., Pena, R. (eds.) IFL 2003. LNCS, vol. 3145, pp. 168-184.
Springer, Heidelberg (2004)

http://web.comlab.ox.ac.uk/oucl/work/ian.lynagh/papers/Typing_Template_Haskell:_Soft_Types.ps
http://web.comlab.ox.ac.uk/oucl/work/ian.lynagh/papers/Typing_Template_Haskell:_Soft_Types.ps

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

Comparing Approaches to Generic Programming in Haskell 149

Norell, U., Jansson, P.: Prototyping generic programming in Template Haskell. In:
Kozen, D. (ed.) MPC 2004. LNCS, vol. 3125, pp. 314-333. Springer, Heidelberg
(2004)

Oliveira, B.C.d.S., Gibbons, J.: TypeCase: A design pattern for type-indexed
functions. In: Loh, A. (ed.) Proceedings Haskell Workshop, ACM Press, New
York (2005)

Oliveira, B.C.d.S., Hinze, R., Loh, A.: Generics as a library. In: Nilsson, H. (ed.)
Proceedings of the 7Tth Symposium on Trends in Functional Programming, Not-
tingham, UK, April 19-21, 2006 (2006)

OMG.Corba, http://www.omg.org/corba/

Peyton Jones, S., et al.: Haskell 98, Language and Libraries. The Revised Report.
A special issue of the Journal of Functional Programming (2003)

Powell, A.L.: A literature review on the quantification of software change. Tech-
nical Report YCS 305, Computer Science, University of York (1998)

Reig, F.: Generic proofs for combinator-based generic programs. In: Loidl, H.-W.
(ed.) Trends in Functional Programming, vol. 5, Intellect (2006)

Schuman, S.A.: On generic functions. In: Schuman, S.A. (ed.) First IFIP WG
2.1 Working Conference on New Directions in Algorithmic Languages 1975, pp.
169-192 IRIA (1975)

Sheard, T.: Generic programming in {2mega. In: Backhouse, R., Gibbons, J.,
Hinze, R., Jeuring, J. (eds.) Datatype-Generic Programming, Advanced Lectures,
LNCS, vol. 4719, Springer, Heidelberg (2006)

de Vries, M.: Specializing type-indexed values by partial evaluation. Master’s the-
sis, Rijksuniversiteit Groningen (2004)

Wadler, P.: Theorems for free! In: Functional Programming Languages and Com-
puter Architecture, FPCA ’89, pp. 347-359. ACM Press, New York (1989)
Wadler, P.: How to replace failure by a list of successes. In: Jouannaud, J.-P. (ed.)
Functional Programming Languages and Computer Architecture. LNCS, vol. 201,
pp. 113-128. Springer, New York (1985)

Wallace, M., Runciman, C.: Heap compression and binary I/O in Haskell. In: 2nd
ACM Haskell Workshop (1997)

Watt, D.A.: Programming Language Design Concepts. John Wiley & Sons, Chich-
ester (2004)

Weirich, S.: Higher-order intensional type analysis. In: Le Métayer, D. (ed.) ESOP
2002 and ETAPS 2002. LNCS, vol. 2305, pp. 98-114. Springer, Heidelberg (2002)
Weirich, S.: Replib: a library for derivable type classes. In: Haskell 06: Proceedings
of the 2006 ACM SIGPLAN workshop on Haskell, pp. 1-12. ACM Press, New York
(2006)

Weirich, S., Huang, L.: A design for type-directed programming in Java. In: Work-
shop on Object-Oriented Developments, WOOD 2004 (2004)

Winstanley, N., Meacham, J.: The DrIFT manual (1997-2005),
http://repetae.net/~john/computer/haskell/DrIFT/

Xi, H.: Dependent types in practical programming. PhD thesis, Carnegie Mellon
University (1998)

http://www.omg.org/corba/
http://repetae.net/~john/computer/haskell/DrIFT/

Generic Programming, Now!

Ralf Hinze and Andres Loh

Institut fiir Informatik I1I, Universitat Bonn
Romerstrafle 164, 53117 Bonn, Germany
{ralf,loeh}@informatik.uni-bonn.de

Abstract. Tired of writing boilerplate code? Tired of repeating es-
sentially the same function definition for lots of different datatypes?
Datatype-generic programming promises to end these coding nightmares.
In these lecture notes, we present the key abstractions of datatype-generic
programming, give several applications, and provide an elegant embed-
ding of generic programming into Haskell. The embedding builds on re-
cent advances in type theory: generalised algebraic datatypes and open
datatypes. We hope to convince you that generic programming is useful
and that you can use generic programming techniques today!

1 Introduction

A type system is like a suit of armour: it shields against the modern dangers
of illegal instructions and memory violations, but it also restricts flexibility.
The lack of flexibility is particularly vexing when it comes to implementing
fundamental operations such as showing a value or comparing two values. In a
statically typed language such as Haskell 98 [38] it is simply not possible, for
instance, to define an equality test that works for all types. As a rule of thumb,
the more expressive a type system, the more fine-grained the type information
and the more difficult it becomes to write general-purpose functions.

This problem has been the focus of intensive research for more than a decade.
In Haskell 1.0 and in subsequent versions of the language, the problem was only
partially addressed: by attaching a so-called deriving form to a datatype declara-
tion the programmer can instruct the compiler to generate an instance of equality
for the new type. In fact, the deriving mechanism is not restricted to equality:
parsers, pretty-printers and several other functions are derivable, as well. These
functions have become known as datatype-generic or polytypic functions, func-
tions that work for a whole family of types. Unfortunately, Haskell’s deriving
mechanism is closed: the programmer cannot introduce new generic functions.

A multitude of proposals have been put forward that support exactly this, the
definition of generic functions. Some of the proposals define new languages, some
define extensions to existing languages, and some define libraries within existing
languages. The early proposals had a strong background in category theory; the
recent years have seen a gentle shift towards type-theoretic approaches. In these
lecture notes, we present a particularly pragmatic approach: we show how to
embed generic programming into Haskell. The embedding builds upon recent

R. Backhouse et al. (Eds.): Datatype-Generic Programming 2006, LNCS 4719, pp. 150, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Generic Programming, Now! 151

advances in type theory: generalised algebraic datatypes and open datatypes.
Or to put it the other way round, we propose and employ language features that
are useful for generic programming. Along the way, we will identify the basic
building blocks of generic programming and we will provide an overview of the
overall design space.

To cut a long story short, we hope to convince you that generic programming
is useful and that you can use generic programming techniques today!

To get the most out of the lecture notes you require a basic knowledge of
Haskell. To this end, Section [2 provides a short overview of the language and its
various extensions. (The section is, however, too dense to serve as a beginner’s
guide to Haskell.) Section [then provides a gentle introduction to the main topic
of these lecture notes: we show how to define generic functions and dynamic
values, and give several applications. The remaining sections are overviewed at
the end of Section [B

2 Preliminaries

2.1 Values, Types and Kinds

Haskell has the three level structure depicted on the right. The
lowest level, that is, the level where computations take place,
consists of values. The second level, which imposes structure

on the value level, is inhabited by types. Finally, on the third kinds
level, which imposes structure on the type level, we have so-
called kinds. Why is there a third level? Haskell allows the types

programmer to define parametric types such as the popular
datatype of lists. The list type constructor can be seen as a
function on types and the kind system allows us to specify
this in a precise way. Thus, a kind is simply the ‘type’ of a
type constructor.

values

Types and their kinds In Haskell, new datatypes are declared using the data
construct. Here are three examples: the type of booleans, the type of pairs and
the type of lists:

data Bool = False | True
data Pair o = («,)
data [«] = Nil | Cons a [«]

In general, a datatype comprises one or more constructors, and each constructor
can have multiple fields. A datatype declaration of the schematic form

dataTa1 Lol Qg = Cl T1’1 Tl,ml ‘ | Cn Tn,l Tn,mn
introduces data constructors Ci, ...,), with signatures

Ci Vo ... 0. Ty — = Tim, — T a1 ... Qg

152 R. Hinze and A. Loh

The constructors False and True of Bool have no arguments. The list construc-
tors Nil and Cons are written [] and ‘” in Haskell. For the purposes of these
lecture notes, we stick to the explicit names, as we will use the colon for some-
thing else.

The following alternative definition of the pair datatype

data Pair o = Pair{fst :: a,snd :: 3}

makes use of Haskell’s record syntax: the declaration introduces the data con-
structor Pair and two accessor functions

fst :Va B .Pairaf—a«
snd ::Va (. Paira §— 0

Pairs and lists are examples of parametrised datatypes or type constructors.
The kind of types such as Bool is %, whereas the kind of a type constructor is a
function of the kind of its parameters to *. The kind of Pair is * — % — %; the
kind of [] is * — *.

In general, the order of a kind is given by

order () =0
order (1 — k) = maz{1+ order (1), order (k) }.

Haskell supports kinds of arbitrary order.

Values and their types Functions in Haskell are usually defined using pattern
matching. Here is the function length that computes the number of elements in
a list:

length :: Va . [a] — Int
length Nil =0
length (Cons z xs) = 1 + length s

The patterns on the left hand side are matched against the actual arguments
from left to right. The first equation, from top to bottom, where the match
succeeds is applied. The first line of the definition is the type signature of length.
Haskell can infer types of functions, but we generally provide type signatures of
all top-level functions. The function length is parametrically polymorphic: the
type of list elements is irrelevant; the function applies to arbitrary lists.

In general, the rank of a type is given by

rank (T) =0
rank (Voo . 1) = maz{1, rank (1)}
rank (o — 1) = maz{inc (rank (o)), rank (1)},

where inc 0 = 0 and inc (n + 1) = n + 2. Most implementations of Haskell
support rank-2 types, although the Haskell 98 standard [38] does not. Recent
versions of the Glasgow Haskell Compiler (GHC) [40] support types of arbitrary

Generic Programming, Now! 153

rank. In Haskell, type variables that appear free in a type signature are implicitly
universally quantified on the outside. For example, the type signature of length
could have been defined as length :: [a] — Int.

Sometimes, we use pattern definitions as a form of syntactic sugar. (Pattern
definitions are not currently supported by any Haskell implementation.) A defi-
nition such as

Single x = Cons x Nil

defines Single x to be a transparent abbreviation of Cons x Nil. We can use
Single on the right-hand side of a function definition to construct a value, but
also as a derived pattern on the left-hand side of a function definition to destruct
a function argument.

2.2 Generalised Algebraic Datatypes

Using a recent version of GHC, there is an alternative way of defining datatypes:
by listing the signatures of the constructors explicitly. For example, the definition
of lists becomes

data [] :: * — * where
Nil :Va.[a]
Cons :: Vo . a— [a] — [«]

The first line declares the kind of the new datatype: [] is a type constructor that
takes types of kind * to types of kind *. The type is then inhabited by listing
the signatures of the data constructors. The original datatype syntax hides the
fact that the result type of all constructors is [a]; this is made explicit here. We
can now also define datatypes where this is not the case, so-called generalised
algebraic datatypes (GADTS):

data Expr :: * — x where
Num :: Int — Expr Int
Plus :: Expr Int — Expr Int — Expr Int
FEq :: Expr Int — Expr Int — Expr Bool
If = Va . Expr Bool — Expr a — Expr a — Expr «

The datatype Expr represents typed expressions: the data constructor Plus, for
instance, can only be applied to arithmetic expressions of type Expr Int; applying
Plus to a Boolean expression results in a type error. It is important to note that
the type Expr cannot be introduced by a standard Haskell 98 data declaration
since the constructors have different result types.

For functions on GADTs, type signatures are mandatory. Here is an evaluator
for the Expr datatype:

eval :: Vo . Expr a — «
eval (Num 1) =1
eval (Plus e1 ea) = eval e + eval eo

154 R. Hinze and A. Loh

eval (Eq e1 e2) = eval €1 == eval ey
eval (If e e e3) = if eval e; then eval e else eval ez

Even though eval is assigned the type Va . Expr a — «, each equation — with
the notable exception of the last one — has a more specific type as dictated by
the type constraints. As an example, the first equation has type Expr Int — Int
as Num constrains a to Int. The interpreter is quite notable in that it is tag free
— that is, no explicit type information is carried at run-time. If it receives a
Boolean expression, then it returns a Boolean.

In the following, we often omit universal quantifiers in type signatures: type
variables that occur free in a type signature are implicitly universally quantified
at the outermost level.

2.3 Open Datatypes and Open Functions

Consider the datatype of expressions that we introduced in the previous section.
The expression language supports integers, addition, equality and conditionals,
but nothing else. If we want to add additional constructs to the expression lan-
guage, then we have to extend the datatype.

In these lecture notes, we assume that we can extend datatypes that have been
flagged as “open”: new constructors can be freely added without modifying the
code that already has been written. In order to mark Expr as an open datatype,
we declare it as follows:

open data Expr:: x — x

Constructors can then be introduced just by providing their type signatures.
Here, we add three new constructors for strings, for turning numbers into strings
and for concatenating strings:

Str :: String — Expr String
Show :: Expr Int — Expr String
Cat :: Expr String — Expr String — Expr String

In order to extend a function, we first have to declare it as open. This is accom-
plished by providing a type signature flagged with the open keyword:

open eval :: Expr a — «

The definition of an open function need not be contiguous; the defining equations
may be scattered around the program. We can thus extend the evaluator to cover
the three new constructors of the Expr datatype:

eval (Str s) =5
eval (Show e) = shown (eval e)
eval (Cat ey e2) = eval e; H eval ey

The semantics of open datatypes and open functions is the same as if they
had been defined closed, in a single place. Openness is therefore mainly a matter

Generic Programming, Now! 155

of convenience and modularity; it does not increase the expressive power of the
language. We use open datatypes and open functions throughout these lecture
notes, but the code remains executable in current Haskell implementations that
do not support these constructs: one can apply a preprocessor that collects into
one place all the constructors for open datatypes and all the defining equations
for open functions.

Using open datatypes and open functions gives us both directions of extensi-
bility mentioned in the famous expression problem [42]: we can add additional
sorts of data, by providing new constructors, and we can add additional opera-
tions, by defining new functions. Here is another function on expressions, which
turns a given expression into its string representation:

open string :: Expr a — String

string (Num) = "(Num" ++ showig @ H ")"
string (Plus ey ex) = "(Plus" 4+ string e; ++ string e + ") "

string (Eq e; e2) ="(EqQ" +H string ey ++ string ex +H ")"

siring (If @1 ¢ ¢s) = "(IE% 444 siring ey 44t siring es Ht string es 4)"
string (Str s) = "(Str" HH 5hoWString 5 H ") "

string (Show ¢) = "(Show" 44t string ¢ 4 ")

string (Cat €1 e3) = "(Cat" —+H string e; -+t string ex H ") "

The auxiliary operator ‘+H’ concatenates two strings with an intermediate blank:
St HEs2=851H" "H 52

As an aside, we note that Vo . Expr a — String, the type of string, is isomorphic
to the existential type (3o . Expr a) — String, as a does not occur in the result
type.

For open functions, first-fit pattern matching is not suitable. To see why,
suppose that we want to provide a default definition for string in order to prevent
pattern matching failures, stating that everything without a specific definition
is ignored in the string representation:

string =""

Using first-fit pattern matching, this equation effectively closes the definition of
string. Later equations cannot be reached at all. Furthermore, if equations of
the function definition are scattered across multiple modules, it is unclear (or at
least hard to track) in which order they will be matched with first-fit pattern
matching.

We therefore adopt a different scheme for open functions, called best-fit left-to-
right pattern matching. The idea is that the most specific match rather than the
first match wins. This makes the order in which equations of the open function
appear irrelevant. In the example above, it ensures that the default case for
string will be chosen only if no other equation matches. If open functions are
implemented via a preprocessor, the defining equations have to be reordered
in such a way that the more specific equations come first. The details of open
datatypes and functions are described in a recent paper [33)].

156 R. Hinze and A. Loh

3 A Guided Tour

3.1 Type-Indexed Functions

In Haskell, showing values of a datatype is particularly easy: one simply attaches
a deriving (Show) clause to the declaration of the datatype.

data Tree « = Empty | Node (Tree) o (Tree)
deriving (Show)

The compiler then automatically generates a suitable show function. This func-
tion is used, for instance, in interactive sessions to print the result of a submitted
expression (the string ‘Now) ’ is the prompt of the interpreter).

Now) tree [0..3]
Node (Node (Node Empty 0 Empty) 1 Empty) 2 (Node Empty 3 Empty)

Here tree :: [a] — Tree « transforms a list into a balanced tree (see Appen-
dix [A)). The function show can be seen as a pretty-printer. The display of
larger structures, however, is not especially pretty, due to lack of indentation.

Now) tree [0..9]

Node (Node (Node (Node Empty 0 Empty) 1 Empty) 2 (Node (Node Em
pty 3 Empty) 4 Empty)) 5 (Node (Node (Node Empty 6 Empty) 7 Empt
y) 8 (Node Empty 9 Empty))

In the sequel, we develop a replacement for show, a generic prettier-printer.
There are several pretty-printing libraries around; since these lecture notes focus
on generic programming techniques rather than pretty-printing we pick a very
basic one (see Appendix [A2]), which just offers basic support for indentation.

data Text
text :: String — Text
nl :: Text

indent :: Int — Text — Text
(&) Text — Text — Text

The function text converts a string to a text, where Text is type of documents
with indentation. By convention, the string passed to text must not contain new-
line characters. The constant n/ has to be used for that purpose. The function
indent adds a given number of spaces after each newline. Finally, ‘>’ concate-
nates two pieces of text.

Given this library it is a simple exercise to write a prettier-printer for trees of
integers.

pretty e = Int — Text
pretty, . n = text (shown n)

Prettytreelnt = 1ree Int — Text

Generic Programming, Now! 157

DPrettyrreeint Lmpty = text "Empty"

Prettytreent (Node 1z 1) = align " (Node " (prettyreent | O 1l
prettye T O nl O
prettyTreelnt r <> text ") ")

align :: String — Text — Text

align s d = indent (length s) (text s d)

While the program does the job, it is not very general: we can print trees of
integers, but not, say, trees of characters. Of course, it is easy to add another
two ad-hoc definitions.

prettycpa = Char — Text
prettycpa ¢ = text (showchar ¢)

DPTettytreechar == Tree Char — Text

prEttyTreeChar Empty = text "Empty"

Prettyrreechar (Node 1z 1) = align " (Node " (prettytreechar ¢ O 1l &
prettycpha T O nl
Prettytreechar T O text ")M)

The code of prettyrieechar 1S almost identical to that of prettyrreein:- It seems that
we actually need a family of pretty printers: Tree is a parametrised datatype
and quite naturally one would like the elements contained in a tree to be pretty-
printed, as well. For concreteness, let us assume that the types of interest are
given by the following grammar.

7u=Char|Int| (7,7) | [7] | Tree T

Implementing a type-indexed family of functions sounds like a typical case for
Haskell’s type classes, in particular, since the deriving mechanism itself relies on
the class system: deriving (Show) generates an instance of Haskell’s predefined
Show class. However, this is only one of several options. In the sequel we explore
a different route that does not depend on Haskell’s most beloved feature. Sec-
tions M and [will then put this approach in perspective, providing an overview
of the overall design space.

type-indexed functions. A simple approach to generic programming
defines a family of functions indexed by type.

poly . :: Poly 7

The family contains a definition of poly_ for each type 7 of interest; the
type of poly. is parametrised by the type index 7. For brevity, we call
poly a type-indexed function (omitting the ‘family of”).

Now, instead of implementing a type-indexed family of pretty-printers, we
define a single function that receives the type as an additional argument and
suitably dispatches on this type argument. However, Haskell doesn’t permit the

158 R. Hinze and A. Loh

explicit passing of types. An alternative is to pass the pretty-printer an additional
argument that represents the type of the value we wish to convert to text.
As a first try, we could assign the pretty-printer the type Type — o — Text
where Type is the type of type representations. Unfortunately, this is too simple-
minded: the parametricity theorem [43] implies that a function of this type must
necessarily ignore its second parameter. This argument breaks down, however,
if we additionally parameterise Type by the type it represents. The signature of
the pretty-printer then becomes Type o — v — Text. The idea is that an element
of type Type 7 is a representation of the type 7. Using a generalised algebraic
datatype (see Section [Z2]), we can define Type directly in Haskell.

open data Type :: x — x where
Char :: Type Char
Int :: Typelnt
Pair :: Type a — Type 8 — Type (o, 3)
List :: Type a — Type [«]
Tree :: Type a — Type (Tree «)
String :: Type String
String = List Char

We declare Type to be open (Section [23)) so that we can add a new type repre-
sentation whenever we define a new datatype. The derived constructor String,
defined by a pattern definition (Section 2T]), is equal to List Char in all contexts.
Recall that we allow String to be used on the left-hand side of equations. Each
type has a unique representation: the type Int is represented by the constructor
Int, the type (String, Int) is represented by Pair String Int and so forth. For any
given 7 in our family of types, Type 7 comprises exactly one element (ignoring
1); Type 7 is a so-called singleton type.

In the sequel, we often need to annotate an expression with its type represen-
tation. We introduce a special type for this purposeEl

infixl 1 :

data Typed a = (:){val :: «, type :: Type a'}
The definition, which makes use of Haskell’s record syntax, introduces the colon *’
as an infix data constructor. Thus, 4711 : Int is an element of Typed Int and
(47,"hello") : Pair Int String is an element of Typed (Int,String). It is im-
portant to note the difference between z : ¢t and z :: 7. The former expression
constructs a pair consisting of a value z and a representation ¢ of its type. The
latter expression is Haskell syntax for ‘z has type 7’.

(%]

! The operator ‘’ is predefined in Haskell for constructing lists. However, since we
use type annotations much more frequently than lists, we use ‘:” for the former and
Nil and Cons for the latter purpose. Furthermore, we agree upon the convention
that the pattern x : ¢ is matched from right to left: first the type representation ¢ is
matched, then the associated value x. In other words: in proper Haskell source code,
z : t has to be written in reverse order, as t :> x.

Generic Programming, Now! 159

Given these prerequisites, we can finally define the desired pretty-printer:

open pretty :: Typed o — Text
pretty (¢ : Char) = prettycpar €
pretty (n: Int) = pretty;, n
pretty ((z,y): Pair a b) = align " " (pretty (z:a)) & nl &
align ", " (pretty (y: b)) & text ")"
pretty (zs: List a) = bracketed [pretty (z: a) | x — xs]
pretty (Empty : Tree a) = text "Empty"
pretty (Node | z r: Tree a)
= align " (Node " (pretty (I: Tree a) & nl &
pretty (z:a) & nl &
pretty (r: Tree a) & text ")")

We declare pretty to be open so that we can later extend it by additional
equations. The function pretty makes heavy use of type annotations; its type
Typed o — Text is essentially an uncurried version of Type a — a — Text. Even
though pretty has a polymorphic type, each equation implements a more spe-
cific case as dictated by the type annotations. For example, the first equation
has type Typed Int — Text.

Let us consider each equation in turn. The first two equations take care of
integers and characters, respectively. Pairs are enclosed in parentheses, the two
elements being separated by a linebreak and a comma. Lists are shown using
bracketed, defined in Appendix[A.2], which produces a comma-separated sequence
of elements between square brackets. Finally, trees are displayed using prefix
notation.

The function pretty is defined by explicit case analysis on the type represen-
tation. This is typical of a type-dependent function, but not compulsory: the
wrapper function show, defined below, is given by a simple abstraction.

show :: Typed a — String
show x = render (pretty x)

The pretty-printer produces output in the following style.

Now) pretty (tree : Tree Int [0..3])
(Node (Node (Node Empty

0
Empty)
1
Empty)
2
(Node Empty
3
Empty))

Now) pretty ([(47, "hello"), (11, "world")]: List (Pair Int String))
[(47

160 R. Hinze and A. Loh

, [’h’
re?
, 10
, 110
; 20’])
(11
, [’W’
, ’g?
, ry
, 110

, a’])]

9

While the layout nicely emphasises the structure of the tree, the pretty-printed
strings look slightly odd: a string is formatted as a list of characters. Fortunately,
this problem is easy to remedy: we add a special case for strings.

pretty (s : String) = text (showsring)

This case is more specific than the one for lists; best-fit pattern matching ensures
that the right instance is chosen. Now, we get

Now) pretty ([(47, "hello"), (11, "world")]: List (Pair Int String))
(47

,"hello")
) (]‘]‘

,"world")]

The type of type representations is, of course, by no means specific to pretty-
printing. Using type representations, we can define arbitrary type-dependent
functions. Here is a second example: collecting strings.

open strings :: Typed ac — [String]

strings (i : Int) = Nil

strings (c: Char) = Nil

strings (s : String) = [s]

strings ((z,y) : Pair a b) = strings (z : a) 4 strings (y : b)
strings (xs : List a) = concat [strings (z: a) | © — xs]
strings (t: Tree a) = strings (inorder t: List a)

The function strings returns the list of all strings contained in the argument
structure. The example shows that we need not program every case from scratch:
the Tree case falls back on the list case. Nonetheless, most of the cases have a
rather ad-hoc flavour. Surely, there must be a more systematic approach to
collecting strings.

Generic Programming, Now! 161

type-polymorphic functions. A function of type
poly :: Vo . Type a — Poly «

is called type-polymorphic or intensionally polymorphic. By contrast, a
function of type Va . Poly « is called parametrically polymorphic.

A note on style: if Poly « is of the form o« — o where a does not occur in
o (poly is a so-called consumer), we will usually prefer the uncurried variant
poly :: Vo . Typed a — o over the curried version.

3.2 Introducing New Datatypes

We have declared Type to be open so that we can freely add new constructors
to the Type datatype and so that we can freely add new equations to existing
open functions on Type. To illustrate the extension of Type, consider the type of
perfect binary trees [13].

data Perfect o = Zero « | Suce (Perfect («, «v))

As an aside, note that Perfect is a so-called nested data type [3]. To be able
to pretty-print perfect trees, we add a constructor to the type Type of type
representations and extend pretty by suitable equations.

Perfect :: Type a — Type (Perfect)

pretty (Zero x : Perfect a) = align " (Zero " (pretty (z : a) text "))
pretty (Succ x : Perfect a)
= align " (Succ " (pretty (x : Perfect (Pair a a)) { text ")")

Here is a short interactive session that illustrates the extended version of pretty.

Now) pretty (perfect 4 1: Perfect Int)
(Succe (Suce (Suce (Suce (Zero ((((1

- — -
A~~~
[—
~— N ~— ~—
~— ~—
~—

- —_—
- —~ ~ —~
S —
— = e e e e el e e el e e
~— ~— ~— ~—
~— ~—
~—
~—
~—
~—
~—
~—
~—

162 R. Hinze and A. Loh

The function perfect d a generates a perfect tree of depth d whose leaves are
labelled with as; its definition is given in Appendix [A1l

3.3 Generic Functions

Using type representations, we can program functions that work uniformly for all
types of a given family, so-called overloaded functions. Let us now broaden the
scope of pretty and strings so that they work for all datatypes, including types
that the programmer has yet to define. For emphasis, we call these functions
generic functions.

overloaded and generic functions. An overloaded function works
for a fixed family of types. By contrast, a generic function works for all
types, including types that the programmer has yet to define.

We have seen in the previous section that whenever we define a new datatype,
we add a constructor of the same name to the type of type representations and
we add corresponding equations to all generic functions. While the extension of
Type is cheap and easy (a compiler could do this for us), the extension of all type-
indexed functions is laborious and difficult (can you imagine a compiler doing
that?). In this section we develop a scheme so that it suffices to extend Type
by a new constructor and to extend one or two particular overloaded functions.
The remaining functions adapt themselves.

To achieve this goal we need to find a way to treat elements of a data type
in a general, uniform way. Consider an arbitrary element of some datatype. It
is always of the form C' e; --- e,, a constructor applied to some values. For
instance, an element of Tree Int is either Empty or of the form Node [a 7.
The idea is to make this applicative structure visible and accessible: to this end
we mark the constructor using Con and each function application using ‘¢’.
Additionally, we annotate the constructor arguments with their types and the
constructor itself with information on its syntax. Consequently, the constructor
Empty becomes Con empty and the expression Node [a 7 becomes Con node ¢
(I': Tree Int) o (a: Int) o (r: Tree Int) where empty and node are the tree
constructors augmented with additional information. The functions Con and ‘¢’
are themselves constructors of a datatype called Spine.

infix] 0 ¢

data Spine :: * — x where
Con :: Constr a« — Spine «
(0) :: Spine (a —) — Typed a — Spine 3

The type is called Spine because its elements represent the possibly partial spine
of a constructor application (a constructor application can be seen as the internal
node of a binary tree; the path to the leftmost leaf in a binary tree is called its
left spine). The following table illustrates the stepwise construction of a spine.

node :: Constr (Tree Int — Int — Tree Int — Tree Int)
Con node :: Spine (Tree Int — Int — Tree Int — Tree Int)

Generic Programming, Now! 163

Con node ¢ (1: Tree Int) :: Spine (Int — Tree Int — Tree Int)
Con node ¢ (1: Tree Int) ¢ (a: Int) :: Spine (Tree Int — Tree Int)
Con node ¢ (1: Tree Int) ¢ (a: Int) ¢ (r: Tree Int) :: Spine (Tree Int)

If we ignore the type constructors Constr, Spine and Typed, then Con has the
type of the identity function, a — «, and ‘¢’ has the type of function application,
(o« —) — a — (. Note that the type variable o does not appear in the result
type of ‘¢’: it is existentially quantiﬁedH This is the reason why we annotate the
second argument with its type. Otherwise, we wouldn’t be able to use it as an
argument of an overloaded function (see below).

An element of type Constr o comprises an element of type a, namely the
original data constructor, plus some additional information about its syntax: its
name, its arity, its fixity and its order. The order is a pair (i, n) with 1 < i < n,
which specifies that the constructor is the ith of a total of n constructors.

data Constr a = Descr{ constr :: a,
name :: String,
arity :: Int,
fixity :: Fixity,
order :: (Integer, Integer) }
data Fixity = Prefiz Int | Infix Int | Infizl Int | Infixr Int | Postfiz Int

Given a value of type Spine «, we can easily recover the original value of type
«a by undoing the conversion step.

fromSpine :: Spine @« — «
fromSpine (Con ¢) = constr ¢
fromSpine (f o) = (fromSpine f) (val z)

The function fromSpine is parametrically polymorphic; it works independently
of the type in question, as it simply replaces Con with the original constructor
and ‘¢’ with function application.

The inverse of fromSpine is not polymorphic; rather, it is an overloaded func-
tion of type Typed av — Spine a. Its definition, however, follows a trivial pattern
(so trivial that the definition could be easily generated by a compiler): if the
datatype comprises a constructor C' with signature

Cim——Th—T0
then the equation for toSpine takes the form
toSpine (C'xy ... y:lo) = Con co (x1:11) 0+ 0 (xp: by)

where ¢ is the annotated version of C' and ¢; is the type representation of ;. As
an example, here is the definition of toSpine for binary trees.

2 All type variables in Haskell are universally quantified. However, Yo . (¢ — 7) is
isomorphic to (Ja . o) — 7 provided « does not appear free in 7; this is where the
term ‘existential type’ comes from.

164 R. Hinze and A. Loh

open toSpine :: Typed ae — Spine «
toSpine (Empty : Tree a) = Con empty
toSpine (Node I x 1 : Tree a) = Con node ¢ (I: Tree a) ¢ (z: a) ¢ (r: Tree a)
empty :: Constr (Tree)
empty = Descr{ constr = Empty,
name = "Empty",
arity =0,
fizity = Prefix 10,
order =(0,2)}

node :: Constr (Tree &« — a — Tree o« — Tree)
node = Descr{ constr = Node,

name = "Node",

arity =3,

fizity = Prefix 10,
order = (1,2)}

Note that this scheme works for arbitrary datatypes including generalised alge-
braic datatypes!

With all the machinery in place we can now turn pretty and strings into truly
generic functions. The idea is to add a catch-all case to each function that takes
care of all the remaining type cases in a uniform manner. Let’s tackle strings
first.

strings x = strings (toSpine x)

strings :: Spine av — [String]

strings (Con ¢) =[]

strings (f o x) = strings [H strings

The helper function strings traverses the spine calling strings for each argument
of the spine.

Actually, we can drastically simplify the definition of strings: every case except
the one for String is subsumed by the catch-all case. Hence, the definition boils
down to:

strings :: Typed o — [String]
strings (s : String) = [s]
strings x = strings (toSpine x)

The revised definition makes clear that strings has only one type-specific case,
namely the one for String. This case must be separated out, because we want
to do something specific for strings, something that does not follow the general
pattern.

The catch-all case for pretty is almost as easy. We only have to take care that
we do not parenthesize nullary constructors.

pretty © = pretty (toSpine x)
pretty :: Spine o — Text

Generic Programming, Now! 165

pretty (Con ¢) = text (name c)

pretty (f o x) = prettyl f (pretty x)

prettyl :: Spine a — Text — Text

prettyl (Con c) d = align (" (" H name ¢ H" ") (d $ teat "))
prettyl (f ox) d = prettyl f (pretty z & nl O d)

Now, why are we in a better situation than before? When we introduce a new
datatype such as, say, XML, we still have to extend the representation type with
a constructor XML :: Type XML and provide cases for the data constructors
of XML in the toSpine function. However, this has to be done only once per
datatype, and it is so simple that it could easily be done automatically. The code
for the generic functions (of which there can be many) is completely unaffected
by the addition of a new datatype. As a further plus, the generic functions are
unaffected by changes to a given datatype (unless they include code that is
specific to the datatype). Only the function toSpine must be adapted to the
new definition, and possibly the type representation if the kind of the datatype
changes.

3.4 Dynamic Values

Haskell is a statically typed language. Unfortunately, one cannot guarantee the
absence of run-time errors using static checks only. For instance, when we com-
municate with the environment, we have to check dynamically whether the im-
ported values have the expected types. In this section we show how to embed
dynamic checking in a statically typed language.

To this end we introduce a universal datatype, the type Dynamic, which en-
compasses all static values. To inject a static value into the universal type we
bundle the value with a representation of its type, re-using the Typed datatype.

data Dynamic :: « where
Dyn :: Typed o — Dynamic

Note that the type variable a does not appear in the result type: it is effectively
existentially quantified. In other words, Dynamic is the union of all typed values.
As an example, misc is a list of a dynamic values.

misc :: [Dynamic]
misc = [Dyn (4711 : Int), Dyn ("hello world" : String)]

Since we have introduced a new type, we must extend the type of type repre-
sentations.

Dynamic :: Type Dynamic

Now, we can also turn misc itself into a dynamic value: Dyn (misc: List Dynamic).

166 R. Hinze and A. Loh

Dynamic values and generic functions go well together. In a sense, they are
dual conceptsﬁ We can quite easily extend the generic function strings so that
it additionally works for dynamic values.

strings (Dyn x : Dynamic) = strings x

An element of type Dynamic just contains the necessary information required by
strings. In fact, the situation is similar to the Spine datatype where the second
argument of ‘¢’ also has an existentially quantified type (this is why we had to
add type information).

Can we also extend toSpine by a case for Dynamic so that strings works
without any changes? Of course! As a first step we add Type and Typed to the
type of representable types.

Type :: Type a — Type (Type «)
Typed :: Type o — Type (Typed «)

The first line looks a bit intimidating with four occurrences of the same identifier,
but it exactly follows the scheme for unary type constructors: the representation
of T:x—xis T :: Type a — Type (T «).

As a second step, we provide suitable instances of toSpine pedantically fol-

lowing the general scheme given in Section (oftype is the infix operator ‘:
augmented by additional information).

toSpine (Char : Type Char) = Con char
toSpine (List t : Type (List a)) = Con list ¢ (t: Type a) -t =a

toSpine ((z : t): Typed a) = Con oftype ¢ (z: 1) o (t: Type t) --t=a

Note that t and a must be the same type representation since the type repre-
sentation of x : t is Typed t. It remains to extend toSpine by a Dynamic case.

toSpine (Dyn x : Dynamic) = Con dyn ¢ (z : Typed (type z))

It is important to note that this instance does not follow the general pattern
for toSpine. The reason is that Dyn’s argument is existentially quantified and
in general, we do not have any type information about existentially quantified
types at runtime (see also Section [i.I]). But the whole purpose of Dyn is to pack
a value and its type together, and we therefore can use this type information to
define toSpine.

To summarise, for every (closed) type with n constructors we have to add
n + 1 equations for toSpine, one for the type representation itself and one for
each of the n constructors.

3 The type Dynamic corresponds to the infinite union 3 . Typed «; a generic function
of type Typed o — o corresponds to the infinite intersection Vo . (Typed a — o)
which equals (3o . Typed o) — o if o does not occur in o. Hence, a generic function
of this type can be seen as taking a dynamic value as an argument.

Generic Programming, Now! 167

Given these prerequisites strings now works without any changes. There is,
however, a slight difference to the previous version: the generic case for Dynamic
traverses both the static value and its type, as *:’ is treated just like every other
data constructor. This may or this may not be what is wanted.

For pretty we decide to give an ad-hoc type case for typed values (we want to
use infix rather than prefix notation for “:’) and to fall back on the generic case
for dynamic values.

pretty ((z:t): Typed a) = align " " (pretty (z: 1)) O nld —-t=a
align ": " (pretty (¢t : Type t)) & text ")

Here is a short interactive session that illustrates pretty-printing dynamic values.

Now) pretty (misc : List Dynamic)
[(Dyn (4711

: Int))
,(Dyn ("hello world"

: (List Char)))]

The constructor Dyn turns a static into a dynamic value. The other way
round involves a dynamic type check. This operation, usually termed cast, takes
a dynamic value and a type representation and checks whether the type represen-
tation of the dynamic value and the one supplied are identical. The type-equality
check itself is given by an overloaded function that takes two type representa-
tions and possibly returns a proof of their equality (a simple truth value is not
enough). The proof states that one type may be substituted for the other. We
define

data (:=:) :: ¥ — % — x where Refl :: o :=: «

This generalised algebraic datatype has the intriguing property that it is non-
empty if and only if its argument types are equalli Given an equality proof of
a and (3, we can turn any value of type « into a value of type 3 by pattern
matching on the proof and thus making the type-equality constraint available
to the type checker:

apply :: (a :=: B) — (a —)
apply p x = case p of { Refl — z}

4 We ignore the fact here, that in Haskell every type contains the bottom element.
Alternatively, we can adapt Leibniz’s principle of substituting equals for equals to
types and define

newtype a :=: 3 = Proof { apply ::Vyo .o a— p 5}

An element of « :=: 3 is then a function that converts an element of type ¢ « into
an element of ¢ (3 for any type constructor ¢. Operationally, this function is always
the identity.

168 R. Hinze and A. Loh

The type-equality type has all the properties of a congruence relation. The con-
structor Refl itself serves as the proof of reflexivity. The equality type is further-
more symmetric, transitive, and congruent. Here are programs that implement
the proofs of congruence for type constructors of kind * — * and * — * — .

ctry i (a:=10)— (Y a:=¢)
ctry p = case p of { Refl — Refl}

ctro (o = 0) = (e = fa) — (Y g e =21 By (2)
ctzo p1 p2 = case p; of { Refl — case ps of { Refl — Refl}}

The type-equality check is now given by

equal :: Type a — Type 8 — Maybe (« :=: 3)

equal Int Int = return Refl

equal Char Char = return Refl

equal (Pair ay ag) (Pair by by) = LftM2 ctzs (equal a1 b1) (equal ag bo)
equal (List a) (List b) = liftM ctzq (equal a b)

equal = fail "types are not unifiable"

Since the equality check may fail, we must lift the congruence proofs into the
Maybe monad using return, liftM , and liftM2. Note that the running time of the
cast function that equal returns is linear in the size of the type (it is independent
of the size of its argument structure).

The cast operation simply calls equal and then applies the conversion function
to the dynamic value.

cast :: Dynamic — Type a — Maybe «
cast (Dyn (z : a)) t = fmap (Ap — apply p x) (equal a t)

Again, we have to introduce an auxiliary datatype to direct Haskell’s type-
checker. Here is a short session that illustrates the use of cast.

Now) let d = Dyn (4711 : Int)
Now) pretty (d : Dynamic)
(Dyn (4711
:Int))
Now) d ‘cast’ Int
Just 4711
Now) fromJust (d ‘cast® Int) + 289
5000
Now) d ‘cast’ Char
Nothing

In a sense, cast can be seen as the dynamic counterpart of the colon operator:
z ‘cast* T yields a static value of type 7 if T is the representation of 7.

Generic Programming, Now! 169

generic functions and dynamic values. Generics and dynamics are
dual concepts:

generic function: Vo . Type a — o
dynamic value: Ja . Type a X o

This is analogous to first-order predicate logic where Vz:T . P(z) is
shorthand for Va . T(z) = P(x) and Jz:T . P(z) abbreviates Jx .
T(z) A P(z).

3.5 Stocktaking

Before we proceed, let us step back to see what we have achieved so far.

Broadly speaking, generic programming is about defining functions that work
for all types but that also exhibit type-specific behaviour. Using a GADT we
have reflected types onto the value level. For each type constructor we have
introduced a data constructor: types of kind % are represented by constants;
parametrised types are represented by functions that take type representations
to type representations. Using reflected types we can program overloaded func-
tions, functions that work for a fixed class of types and that exhibit type-specific
behaviour. Finally, we have defined the Spine datatype that allows us to treat
data in a uniform manner. Using this uniform view on data we can generalise
overloaded functions to generic ones.

In general, support for generic programming consists of three essential ingre-
dients:

— a type reflection mechanism,
— a type representation, and
— a generic view on data.

Let us consider each ingredient in turn.

Type reflection. Using the type of type representations we can program functions
that depend on or dispatch on types. Alternative techniques include Haskell’s
type classes and a type-safe cast. We stick to the GADT technique in these
lecture notes.

Type representation.. Ideally, a representation type is a faithful mirror of the
language’s type system. To be able to define such a representation type or some
representation type at all, the type system must be sufficiently expressive. We
have seen that GADTs allow for a very direct representation; in a less expressive
type system we may have to encode types less directly or in a less type-safe
manner. However, the more expressive a type system, the more difficult it is to
reflect the full system onto the value level. We shall see in Section Ml that there
are several ways to model the Haskell type system and that the one we have
used in this section is not the most natural or the most direct one. Briefly, the
type Type models the type system of Haskell 1.0; it is difficult to extend to the
more expressive system of Haskell 98 (or to one of its manifold extensions).

170 R. Hinze and A. Loh

Generic view. The generic view has the largest impact on the expressivity of a
generic programming system: it affects the set of datatypes we can cover, the
class of functions we can write and potentially the efficiency of these functions.
In this section we have used the spine view to represent data in a uniform way.
We shall see that this view is applicable to a large class of datatypes, including
GADTs. The reason for the wide applicability is simple: a datatype definition
describes how to construct data, the spine view captures just this. Its main
weakness is also rooted in the ‘value-orientation’: one can only define generic
functions that consume data (show) but not ones that produce data (read).
Again, the reason for the limitation is simple: a uniform view on individual
constructor applications is useful if you have data in your hands, but it is of
no help if you want to construct data. Section Bl shows how to overcome this
limitation and furthermore introduces alternative views.

4 Type Representations

4.1 Representation Types for Types of a Fixed Kind

Representation Type for Types of Kind *. The type Type of Section [3.1]
represents types of kind x. A type constructor T is represented by a data con-
structor T of the same name. A type of kind * is either a basic type such as Char
or Int, or a compound type such as List Char or Pair Int (List Char). The com-
ponents of a compound type are possibly type constructors of higher kinds such
as List or Pair. These type constructors must also be represented using the type
Type of type representations. Since type constructors are reflected onto the value
level, the type of the data constructor T depends on the kind of the type con-
structor T. To see the precise relationship between the type of T and the kind
of T, re-consider the declaration of Type, this time making polymorphic types
explicit.

open data Type :: x — x where

Char :: Type Char

Int :: Typelnt

Pair ::Va . Type a — (V3 . Type 8 — Type (a, 3))
List :: Vo . Type a — Type [a]

Tree ::Va . Type a — Type (Tree «)

A type constructor T of higher kind is represented by a polymorphic function
that takes a type representation for a to a type representation for T «, for all
types «. In general, T, has the signature

T, = Type, Ts
where Type,, is defined

type Type, «a = Typea
type Type,_,,, p = Vo . Type, a — Type, (¢ a)

Generic Programming, Now! 171

Thus, application on the type level corresponds to application of polymorphic
functions on the value level.

So far we have only encountered first-order type constructors. Here is an
example of a second-order one:

newtype Fix ¢ = In{out :: ¢ (Fix ¢)}

The declaration introduces a fixed point operator, Fix, on the type level, whose
kind is (% — %) — *. Consequently, the value counterpart of Fix has a rank-2 type:
it takes a polymorphic function as an argument.

Fiz Vo . (Va . Type a — Type (¢ a)) — Type (Fix ¢)

Using Fiz, the representation of type fixed points, we can now extend, for in-
stance, strings by an appropriate case.

strings (In x : Fiz f) = strings (z : f (Fiz f))

Of course, this case is not really necessary: if we add a Fix equation to toSpine,
then the specific case above is subsumed by the generic one of Section

toSpine (In x : Fiz f) = Con in ¢ (z : f (Fiz f))

Here in is the annotated variant of In. Again, the definition of toSpine pedan-
tically follows the general scheme.

Unfortunately, we cannot extend the definition of equal to cover the Fix case:
equal cannot recursively check the arguments of Fix for equality, as they are
polymorphic functions. In general, we face the problem that we cannot pattern
match on polymorphic functions: Fiz List, for instance, is not a legal pattern
(List is not saturated). In Section .2l we introduce an alternative type represen-
tation that does not suffer from this problem.

Representation Type for Types of Kind * — *. The generic functions of
Section[Blabstract over a type of kind *. For instance, pretty generalises functions
of type

Char — Text, String — Text, [[Int]] — Text
to a single generic function of type
Type @ — o — Text or equivalently Typed o — Text

A generic function may also abstract over a type constructor of higher kind. Take,
as an example, the function size that counts the number of elements contained
in some data structure. This function generalises functions of type

[a] = Int, Treea—Int, [Tree a] — Int

to a single generic function of type

172 R. Hinze and A. Loh

Type' ¢ — ¢ a— Int or equivalently Typed’ ¢ o — Int

where Type' is a representation type for types of kind x— * and Typed’ is a suitable
type, to be defined shortly, for annotating values with these representations.
How can we represent type constructors of kind x — %7 Clearly, the type
Type,_,, is not suitable, as we intend to define size and other generic functions
by case analysis on the type constructor. Again, the elements of Type, ., are
polymorphic functions and pattern-matching on functions would break referen-
tial transparency. Therefore, we define a new tailor-made representation type.

open data Type' :: (x — %) — x where
List :: Type' []
Tree :: Type' Tree

Think of the prime as shorthand for the kind index x — *. Additionally, we
introduce a primed variant of Typed.

infix1 1
data Typed ¢ a = (/){val’ :: ¢ o, type’ :: Type’ p}

The type Type’ is only inhabited by two constructors since the other datatypes
have kinds different from * — *.
An overloaded version of size is now straightforward to define.

size :: Typed’ ¢ o — Int

size (Nil 2" List) =0

size (Cons z xs:' List) =1+ size (zs:' List)

size (Empty 2" Tree) =0

size (Node | z v Tree) = size (1" Tree) + 1+ size (r:' Tree)

Unfortunately, size is not as flexible as pretty. If we have some compound data
structure z, say, a list of trees of integers, then we can simply call pretty (z :
List (Tree Int)). We cannot, however, use size to count the total number of
integers, simply because the new versions of List and Tree take no arguments!

There is one further problem, which is more fundamental. Computing the size
of a compound data structure is inherently ambiguous: in the example above,
do we count the number of integers, the number of trees or the number of
lists? Formally, we have to solve the type equation ¢ 7 = List (Tree Int). The
equation has, in fact, not three but four principal solutions: ¢ = Aa — « and
7 = List (Tree Int), ¢ = Aa — List @ and 7 = Tree Int, ¢ = Aa — List (Tree «)
and 7 = Int, and ¢ = Aa — List (Tree Int) and 7 arbitrary. How can we represent
these different container types? They can be easily expressed using functions:
Aa — a, Aa — List a, A\a — List (Tree a), and Aa — List (Tree Int). Alas, we
are just trying to get rid of the functional representation. There are several ways
out of this dilemma. One possibility is to lift the type constructors [15] so that
they become members of Type’ and to include Id, defined as

newtype Id a = Ing{ outiq :: '}

Generic Programming, Now! 173

as a representation of the type variable a:

Id :: Type' Id

Char’ :: Type’ Char’

Int" :: Type' Int/

List" :: Type’ ¢ — Type’ (List’ @)
Tree' :: Type' ¢ — Type' (Tree’)

The type List’, for instance, is the lifted variant of List: it takes a type constructor
of kind % — * to a type constructor of kind * — . Using the lifted types we can
specify the four different container types as follows: Id, List’ Id, List’ (Tree’ Id) and
List’ (Tree’ Int’). Essentially, we replace the types by their lifted counterparts and
the type variable o by Id. Note that the above constructors of Type’ are exactly
identical to those of Type except for the kinds.

It remains to define the lifted versions of the type constructors.

newtype Char’ X = Inchar { outchar :: Char}

newtype Int’ = Inne { outyny Int}

data List’ o/ x Nil" | Cons’ (o' x) (List’ o/ x)

data Pair' o 8’ x = Pair’ (¢ x) (5 X)

data Tree’ o/ x = Empty’ | Node’ (Tree’ o/ x) (/' x) (Tree’ o’ x)

The lifted variants of the nullary type constructors Char and Int simply ignore
the additional argument y. The data definitions follow a simple scheme: each
data constructor C' with signature

Curmp—- =Ty —T
is replaced by a polymorphic data constructor ¢’ with signature
C' V. 1ixX— = Th X—T)X

where 7/ is the lifted variant of 7.
The function size can be easily extended to Id and to the lifted types.

size (x 2 Id) =1

size (¢’ Char’) =0

size (i 2 Int’) =0

size (Nil" " List’ a') =0

size (Cons’ x xs ' List' a') = size (' a') + size (zs:' List’ a')
size (Empty" ' Tree ad) =0

size (Node' | z 1 Tree' a')

= size (1" Tree’ a') + size (x ' ') + size (r:' Tree’ o’)

The instances are similar to the ones for the unlifted types, except that size is
now also called recursively for list elements and tree labels, that is, for compo-
nents of type /.

Unfortunately, in Haskell size no longer works on the original data types: we
cannot call, for instance, size (z:" List’ (Tree’ Id)) where x is a list of trees of

174 R. Hinze and A. Loh

integers, since List’ (Tree’ Id) Int is different from [Tree Int]. However, the two
types are isomorphic: 7 2 7' Id where 7’ is the lifted variant of 7 [I5]. We leave
it at that for the moment and return to the problem later in Section [l

We have already noted that Type’ is similar to Type except for the kinds.
This becomes even more evident when we consider the signature of a lifted type
representation: the lifted version of T, has signature

T! :: Typel, T'.
where Type/, is defined

type Type, o= Type «
type Type; ., » = Vo . Type, a — Type;, (¢ a)

Defining an overloaded function that abstracts over a type of kind *— x is similar
to defining a *-indexed function, except that one has to consider one additional
case, namely |d, which defines the action of the overloaded function on the type
parameter. It is worth noting that it is not necessary to define instances for
the unlifted type constructors ([] and Tree in our running example), as we have
done, because these instances can be automatically derived from the lifted ones
by virtue of the isomorphism 7 2 7/ Id (see Section B.3]).

Representation Type for Types of Kind w. Up to now we have confined
ourselves to generic functions that abstract over types of kind * or * — *. An
obvious question is whether the approach can be generalised to kind indices of
arbitrary kinds. This is indeed possible. However, functions that are indexed by
higher kinds, for instance, by (x — %) — % — * are rare. For that reason, we only
sketch the main points. For a formal treatment see Hinze’s earlier work [I5].
Assume that w = k1 — -+ — K, — * is the kind of the type index. We first
introduce a suitable type representation and lift the datatypes to kind w by
adding n type arguments of kinds k1, ..., K.

open data Type” :: w — * where
T :: Type, T¢
where T¢ is the lifted version of T, and Type} is defined

type Typel « = Type” a
type Type,” ., ¢ = Va . Type, a — Type, (¢ a)

The lifted variant T of the type T, has kind x* where (—)“ is defined induc-
tively on the structure of kinds

*“ =w
(L= R)Y =1 = KY

Types and lifted types are related as follows: 7 is isomorphic to 7 Outy ... Outy,
where Out; is the projection type that corresponds to the i-th argument of w.
The generic programmer has to consider the cases for the lifted type constructors
plus n additional cases, one for each of the n projection types Outy, ..., Out,.

Generic Programming, Now! 175

4.2 Kind-Indexed Families of Representation Types

We have seen that type-indexed functions may abstract over arbitrary type con-
structors: pretty abstracts over types of kind *, size abstracts over types of kind
* — k. Sometimes a type-indexed function even makes sense for types of different
kinds. A paradigmatic example is the mapping function: the mapping function
of a type ¢ of kind % — x lifts a function of type a3 — a9 to a function of type
© a1 — @ ag; the mapping function of a type ¢ of kind x — x — x takes two
functions of type a; — g and 1 — (2 respectively and returns a function of
type ¥ ay 1 — ¥ as B2. As an extreme case, the mapping function of a type o
of kind x is the identity of type o — o.

Dictionary-Passing Style. The above discussion suggests turning map into a
family of overloaded functions. Since the type of the mapping functions depends
on the kind of the type argument, we have, in fact, a kind-indexed family of
overloaded functions. To make this work we have to represent types differently:
we require a kind-indexed family of representation types.

open data Type, :: kK — * where
Ty :: Type, Ty

In this scheme Int :: * is represented by a data constructor of type Type,; the type
constructor Tree :: x — % is represented by a data constructor of type Type,_,,
and so forth. There is, however, a snag in it. If the representation of Tree is
not a function, how can we represent the application of Tree to some type? The
solution is simple: we also represent type application syntactically using a family
of kind-indexed constructors.

App, . = Type, .. ¢ — Type, a — Type, (¢ a)

The result type dictates that App, , is an element of Type, . Theoretically, we need
an infinite number of App, ,, constructors, one for each combination of ¢+ and .
Practically, only a few are likely to be used, since types with a large number of
type arguments are rare. For our purposes the following declarations suffice.

open data Type, :: *+ — x where

Char :: Type, Char

Int. :: Type, Int

App, . i Type,_., ¢ — Type, a — Type, (p a)
open data Type,_ ., :: (x — %) — % where

Liste—s : Type,_,, []

Tree.—. :: Type,_,, Tree

Appy i Type, ., ¢ — Type, a — Type,_,, (¢ @)
open data Type i (* — % — %) — * where

k—>k—>%x °°

PU/”’*H*H* o T}’Pe*a*e* (7)

For example, Tree Int is now represented by Tree... ‘App, .* Int.. We have
(Pairs—s—s “App, .. Ints) ‘App, " Int. = Type, (Int,Int). Since App, , is

176 R. Hinze and A. Loh

¢

a data constructor, we can pattern match both on Tree._.. ‘App, ., a and on
Tree,— . alone. Since Haskell allows type constructors to be partially applied,
the family Type,, is indeed a faithful representation of Haskell’s type system.

It is straightforward to adapt the type-indexed functions of Section B to the
new representation. In fact, using a handful of pattern definitions we can re-use
the code without any changes.

Int :» Type, Int

Int = Int.,

Char :: Type, Char

Char = Char,

Pair :w Type, a — Type, 0 — Type, («,3)
Pair a b = Pair.— . ‘App, .. a ‘App, ' b
List o Type, a — Type, [a]

List a = List.—. ‘App, " a

Tree o Type, a — Type, (Tree)

Tree a = Trees,_.« ‘App*’* a

The definitions show that the old representation can be defined in terms of
the new representation. The reverse, however, is not true: we cannot turn a
polymorphic function into a data constructor.

Now, let’s tackle an example of a type-indexed function that works for types
of different kinds. We postpone the implementation of the mapping function
until the end of the section and first re-implement the function size that counts
the number of elements contained in a data structure (see Section [:T]).

size :: Type,_,, ¢ — p a— Int

How can we generalise size so that it works for types of arbitrary kinds? The
essential step is to abstract away from size’s action on values of type «, turning
the action of type v — Int into an additional argument:

count.—. :: Type,_,, » — (a— Int) — (¢ a — Int)

We call size’s kind-indexed generalisation count. If we instantiate the second
argument of count,_, to const 1, we obtain the original function back. But
there is also an alternative choice: if we instantiate the second argument to id,
we obtain a generalisation of Haskell’s sum function, which sums the elements
of a container.

size :: Type,_,, p — p a—lInt
size [= count._,. f (const 1)

sum :: Type,_,, p — @ Int — Int
sum f = count,_, [id

Two generic functions for the price of one!

Generic Programming, Now! 177

Let us now turn to the definition of count,. Since count, is indexed by kind,
it also has a kind-indexed type.

count,, :: Type,, o — Count,;, v
where Count,, is defined

type Count, a=a—Int
type Count, ., ¢ = Va . Count, @« — Count,, (¢ «)

The definition looks familiar: it follows the scheme we have already encoun-
tered in Section 1] (Type,, is defined analogously). The first line specifies that a
‘counting function’ maps an element to an integer. The second line expresses that
count,—,,, f takes a counting function for a to a counting function for ¢ «, for
all . This means that the kind-indexed function count, maps type application
to application of generic functions.

count,, (App, . f a) = (count, . f) (count, a)

This case for App, , is truly generic: it is the same for all kind-indexed generic
functions (in dictionary-passing style; see below) and for all combinations of ¢
and k. The type-specific behaviour of a generic function is solely determined
by the cases for the different type constructors. As an example, here are the
definitions for count,:

open count, :: Type, a — Count, «
count, (f ‘App. " a) = (count._ f) (count. a)

count, t = const 0

open count._. :: Type,_,, a — Count,_,, «

count ., List,_ ¢ = sumpj . map ¢

countys_,y Tree._. ¢ = county_ . List._ . c . inorder

count . (f App a) ¢ = (count,_ . f) (count, a) c

open counts . 2 Type, ., ., a— Count, . 4
county— s (Pairy_si) €1 ¢2 = N1, 22) — ¢1 21 + €2 22

Note that we have to repeat the generic App, ,; case for every instance of ¢ and .
The catch-all case for types of kind * determines that elements of types of kind
such as Int or Char are mapped to 0.

Taking the size of a compound data structure such as a list of trees of integers
is now much easier than before: the count function for A« — List (Tree «) is the
unique function that maps ¢ to count,_.. (Lists_.) (counts_. (Tree._.) c).
Here is a short interactive session that illustrates the use of count and size.

Now) let ts = [tree [0..4] | i — [0..9]]
Now) size (Listi—.) ts

10

Now) counts_ . (List._..) (size (Tree.—)) ts
55

178 R. Hinze and A. Loh

The fact that count._, is parametrised by the action on « allows us to mimic
type abstraction by abstraction on the value level. Since count._. . receives the
x-instance of the count function as an argument, we say that count is defined in
dictionary-passing style. There is also an alternative, type-passing style, which
we discuss in a moment, where the type representation itself is passed as an
argument.

The definition of the mapping function is analogous to the definition of size
except for the type. Recall that the mapping function of a type ¢ of kind * — %
lifts a function of type a; — ag to a function of type ¢ a1 — ¢ as. The instance
is doubly polymorphic: both the argument and the result type of the argument
function may vary. Consequently, we assign map a kind-indexed type that has
two type arguments:

map,, :: Type,, @« — Map,. o «
where Map,, is defined

type Map, a3 a2 =a; — o
type Map, ., 1 @2 = Va1 as . Map, g az — Map,, (¢1 a1) (02 az)

The definition of map itself is straightforward:

open map, :: Type, a« — Map, o «

map, Int, = id

map, Char, =1d

map, (App, . f a) = (map,_., f) (map, a)

open map, ., :: Type, ., o —Map,_ ., ¢ ¢
map,_,, List._. = mapy,

Map ., « Tree,—.« = MapPTree

map, . (App, ... [a) = (map, ... f) (map, a)
open map, ., ., = Type, . .o —Map, . ¢
map*%*%* Pair*"*H* f) (a7 b) = (f a, g b)

Each instance simply defines the mapping function for the respective type.

kind-indexed functions. A kind-indexed family of type-polymorphic
functions

poly,. ::Va . Type, a — Poly, «

contains a definition of poly,, for each kind of interest. The type rep-
resentation Type,. and the type Poly, are indexed by kind, as well. For
brevity, we call poly,. a kind-indexed function (omitting the ‘family of
type-polymorphic’).

Type-Passing Style. The functions above are defined in dictionary-passing style,
as instances of overloaded functions are passed around. An alternative scheme

Generic Programming, Now! 179

passes the type representation instead. We can use it, for instance, to define *-
indexed functions in a less verbose way. To illustrate, let us re-define the overloaded
function pretty in type-passing style. Its kind-indexed type is given by

type Pretty, a=a— Text
type Pretty, ., ¢ = Va . Type, o — Pretty,. (¢ @)

The equations for pretty, are similar to those of pretty of Section Bl ex-
cept for the ‘type patterns’: the left-hand side pretty (T a1 ... a,) becomes
pretty,. Ty a1 ... an, where x is the kind of T.

open pretty, :: Type, a — Pretty, «

pretty, Char, c = prettycpar €

pretty, Int. n = pretty;y N

pretty, (f “App, . a) z =pretty, .. fax

open pretty, ., = Type,_,, a — Pretty, ., «

pretty, ., List._.. a xs = bracketed [pretty, a x | x — xs
pretty, ., Tree.—.. a Empty = text "Empty"

pretty, ., Tree.—.. a (Node | x 1)
= align " (Node " (pretty,_,, Tree._.. al O nl
pretty, a x O nl O
pretty, ., Tree._.. ar < text ")")
pretty, ., (f ‘App, ... a)bax =pretty,_ .., fabz

open pretty, . . Type, ., ., a—Pretty, ., «a
pretty, ..., Pair._._.. a b (z,y) = align " " (pretty, a) $ nl &
align ", " (pretty, b y) < text ")"

The equations for type application have a particularly simple form.

poly,. (App, . f a)=poly,_. [a

Type-passing style is preferable to dictionary-passing style for implementing
mutually recursive generic functions. In dictionary-passing style we have to tuple
the functions into a single dictionary (analogous to the usual implementation
of Haskell’s type classes). On the other hand, using dictionary-passing style
we can define truly polymorphic generic functions such as, for example, size ::
Type,_,,. ¢ — Va . ¢ a — Int, which is not possible in type-passing style where
size has type Type,_,, ¢ — Va . Type, a — ¢ a — Int.

dictionary- and type-passing style. A kind-indexed family of over-
loaded functions is said to be defined in dictionary-passing style if the
instances for type functions receive as an argument the instance (the
dictionary) for the type parameter. If instead the type representation
itself is passed, then the family is defined in type-passing style.

180 R. Hinze and A. Loh

4.3 Representations of Open Type Terms

Haskell’s type system is somewhat peculiar, as it features type application but
not type abstraction. If Haskell had type-level lambdas, we could determine the
instances of * — *x-indexed functions using suitable type abstractions: for our
running example we could use representations of Aa — List (Tree Int), Aa — a,
Aa— List «, or Aa— List (Tree «). Interestingly, there is an alternative. We can
represent an anonymous type function by an open type term: Aa— List (Tree),
for instance, is represented by List (Tree a) where a is a suitable representation
of a.

Representation Types for Types of a Fixed Kind. To motivate the repre-
sentation of free type variables, let us work through a concrete example. Consider
the following version of count that is defined on Type, the original type of type
representations.

count :: Type a — (o — Int)

count (Char) = const 0

count (Int) = const 0

count (Pair a b) = Xz, y) — count a z + count by
count (List a) = sumyy . mapy (count a)

count (Tree a) = sump) . map) (count a) . inorder

As it stands, count is point-free, but also pointless, as it always returns the
constant 0 (unless the argument is not fully defined, in which case count is
undefined, as well). We shall see in a moment that we can make count more useful
by adding a representation of unbound type variables to Type. The million-dollar
question is, of course, what constitutes a suitable representation of an unbound
type variable? Now, if we extend count by a case for the unbound type variable,
its meaning must be provided from somewhere. An intriguing choice is therefore
to identify the type variable with its meaning. Thus, the representation of an
open type variable is a constructor that embeds a count instance, a function of
type a — Int, into the type of type representations.

Count :: (a — Int) — Type «

Since the ‘type variable’ carries its own meaning, the count instance is particu-
larly simple.

count (Count ¢) = ¢

A moment’s reflection reveals that this approach is an instance of the ‘embed-
ding trick’ [9] for higher-order abstract syntax: Count is the pre-inverse or right
inverse of count. Using Count we can specify the action on the free type variable
when we call count:

Now) let ts = [tree [0..i] | i« [0..9 = Int]]
Now) let a = Count (const 1)

Generic Programming, Now! 181

Now) count (List (Tree Int)) ts
0

Now) count a ts

1

Now) count (List a) ts

10

Now) count (List (Tree a)) ts
59

Using a different instance we can also sum the elements of a data structure:

Now) let a = Count id

Now) count (Pair Int Int) (47,11)
0

Now) count (Pair a Int) (47,11)
47

Now) count (Pair Int a) (47,11)
11

Now) count (Pair a a) (47,11)
58

The approach would work perfectly well if count were the only generic function.
But it is not:

Now) pretty (4711: a)
*** Exception: Non-exhaustive patterns in function pretty

If we pass Count to a different generic function, we get a run-time error. Un-
fortunately, the problem is not easy to remedy, as it is impossible to define a
suitable Count instance for pretty. We simply have not enough information to
hand. There are at least two ways out of this dilemma: we can augment the
representation of unbound type variables by the required information, or we can
use a different representation type that additionally abstracts over the type of a
generic function. Let us consider each alternative in turn.

To define a suitable equation for pretty or other generic functions, we basically
need the representation of the instance type. Therefore we define:

infix1 ‘ Use*
Use :: Type a — Instance a — Type «

where Instance gathers instances of generic functions:

open data Instance :: ¥ — * where
Pretty :: (o — Text) — Instance «
Count :: (o — Int) — Instance «

Using the new representation, Count ¢ becomes a ‘Use‘ Count ¢, where a is
the representation of ¢’s instance type. Since Use couples each instance with a
representation of the instance type, we can easily extend count and pretty:

182 R. Hinze and A. Loh

count (Use a d) = case d of { Count ¢ — c; otherwise — count a}
pretty (Use a d) = case d of { Pretty p — p; otherwise — pretty a}

The definitional scheme is the same for each generic function: we first check
whether the instance matches the generic function at hand, otherwise we recurse
on the type representation. It is important to note that the scheme is indepen-
dent of the number of generic functions, in fact, the separate Instance type was
introduced to make the pattern matching more robust. A type representation
that involves Use such as Int ‘ Use‘ Count c‘Use* Pretty p :: Type Int can be seen
as a mini-environment that determines the action of the listed generic functions
at this point. The above instances of count and pretty effectively perform an
environment look-up at runtime.

Let us now turn to the second alternative. The basic idea is to parameterise
Type by the type of generic functions.

open data PType :: (x — %) — * — x where
PChar :: PType poly Char
PInt :: PType poly Int
PPair :: PType poly a — PType poly 8 — PType poly («,)
PList :: PType poly a — PType poly [a]
PTree :: PType poly a — PType poly (Tree «)

A generic function then has type PType Poly e — Poly « for some suitable type
Poly. As before, the representation of an unbound type variable is a constructor
of the inverse type, except that now we additionally abstract away from Poly.

PVar :: poly a — PType poly «

Since we abstract over Poly, we make do with a single constructor: PVar can be
used to embed instances of arbitrary generic functions.

The definition of count can be easily adapted to the new representation (for
technical reasons, we have to introduce a newtype for count’s type).

newtype Count & = Incount{ 0Utcount :: @ — Int}

peount :: PType Count o — (v — Int)

peount (PVar ¢) = outcount €

pcount (PChar) = const 0

peount (PInt) = const 0

pcount (PPair a b) = Xz, y) — pcount a x + pcount b y
peount (PList a) = sump) . map) (pcount a)

pcount (PTree a) = sumy) . map; (pcount a) . inorder

The code is almost identical to what we have seen before, except that the type
signature is more precise.
Here is an interactive session that illustrates the use of pcount.

Now) let ts = [tree [0..i] |7« [0..9 = Int]]
Now) let a = PVar (Incount (const 1))

Generic Programming, Now! 183

Now) :type a
a ::Va . PType Count «
Now) pcount (PList (PTree PInt)) ts

0

Now) pcount (a) ts

1

Now) pcount (PList a) ts

10

Now) pcount (PList (PTree a)) ts
55

Now) let a = PVar (Incount id)
Now) :type a

PType Count Int
Now) pcount (PList (PTree a)) ts
165

Note that the type of a now limits the applicability of the unbound type variable:
passing it to pretty would result in a static type error.

We can also capture our standard idioms, counting elements and summing up
integers, as abstractions.

psize [= pcount (f a) where a = PVar (Incount (const 1))
psum [= pcount (f a) where a = PVar (Incount id)

Given these definitions, we can represent type constructors of kind x — % by
ordinary, value-level \-terms.

Now) let ts = [tree [0..i] | i« [0..9 == Int]]
Now) psize (Aa — PList (PTree Plnt)) ts
?Vow) psize (Aa — a) ts

}V0w> psize (Aa — PList a) ts

}\?ow> psize (Aa — PList (PTree a)) ts

?V50w) psum (Aa — PPair PInt PInt) (47,11)
9\/010) psum (Aa — PPair a Plnt) (47,11)
Z11\770111) psum (Aa — PPair PInt a) (47,11)
}Vlow) psum (Aa — PPair a a) (47,11)
58

It is somewhat surprising that the expressions above type-check, in particular,
as Haskell does not support anonymous type functions. The reason is that we
can assign psize and psum Hindler-Milner types:

184 R. Hinze and A. Loh

psize :: (PType Count @« — PType Count 3) — (8 — Int)
psum :: (PType Count Int — PType Count 3) — (8 — Int)

The functions also possess Fw types [10], which are different from the types
above:

psize :: Vo . PType,_,, Count p — (Var. p @ — Int)
psum :: Vo . PType,_,, Count p — (Va . ¢ Int — Int)

Using Fw types, however, the above calls do not type-check, since Haskell em-
ploys a kinded first-order unification of types.

Kind-Indexed Families of Representation Types The other representation
types, Type’ and Type,, can be extended in an analogous manner to support open
type terms. For instance, for Type, we basically have to introduce kind-indexed
versions of Use and Instance.

open data Instance, :: Kk — *x where
Poly,. :: Poly,. o — Instance,, «

Use,, :: Type,, a — Instance,, a — Type,, «
poly,. (Use,, a d) = case d of {Poly,. p — p; otherwise — poly,, a}

The reader may wish to fill in the gory details and to work through the imple-
mentation of the other combinations.

5 Views

In Section @ we thoroughly investigated the design space of type representations.
The examples in that section are without exception overloaded functions. In
this section we explore various techniques to turn these overloaded functions
into truly generic ones. Before we tackle this, let us first discuss the difference
between nominal and structural type systems.

Haskell has a nominal type system: each data declaration introduces a new
type that is incompatible with all the existing types. Two types are equal if and
only if they have the same name (and hence the same structure). In contrast,
in a structural type system two types are equal if they have the same structure,
even if they have different names. In a language with a structural type system
there is no need for a generic view; a generic function can be defined exhaustively
by induction on the structure of types.

For nominal systems the key to genericity is a uniform view on data. In Sec-
tion B3] we introduced the spine view, which views data as constructor applica-
tions. Of course, this is not the only generic view. PolyP [27], for instance, views
data types as fixed points of regular functors; Generic Haskell [20] uses a sum-
of-products view. We shall see that these two approaches can be characterised
as type-oriented: they provide a uniform view on all elements of a datatype. By
contrast, the spine view is value-oriented: it provides a uniform view on single
elements.

Generic Programming, Now! 185

View. For the following it is useful to make the concept of a view explicit.

infixr 5 —
infix]l 5«

typea—f=0F—a
data View :: x — x where
View :: Type § — (o —) — (a +) — View «

A view consists of three ingredients: a so-called structure type that constitutes
the actual view on the original datatype, and two functions that convert to and
fro. To define a view the generic programmer simply provides a view function

view :: Type a — View «

that maps a type to its structural representation. The view function can then be
used in the catch-all case of a generic function. Take as an example the modified
definition of strings (the original catch-all case is defined in Section B.1]).

strings (x : t) = case view t of
View w fromData toData — strings (fromData x : u)

Using one of the conversion functions, z : ¢t is converted to its structural repre-
sentation fromData x : u, on which strings is called recursively. Because of the
recursive call, the definition of strings must contain additional case(s) that deal
with the structure type. For the spine view, a single equation suffices.

strings (x : Spine a) = strings «

Lifted view. For the type Type’ of lifted type representations, we can set up
similar machinery.

infixr 5 =
infix] 5 <

typep > =Va.pa—v«
typep — v =Va.va—pa
data View’ :: (* —) — * where
View" :: Type') — (¢ =) — (¢ < ¢) — View' ¢

The view function is now of type
view’ :: Type’ ¢ — View’ ¢
and is used as follows:

map f m xz = case view' [of
View’ g fromData toData — (toData . map g m . fromData) x

In this case, we require both the fromData and the toData function.

186 R. Hinze and A. Loh

5.1 Spine View
The spine view of the type 7 is simply Spine 7:

spine :: Type a — View «
spine a = View (Spine a) (Ax — toSpine (z : a)) fromSpine

Recall that fromSpine is parametrically polymorphic, while toSpine is an over-
loaded function. The definition of toSpine follows a simple pattern: if the datatype
comprises a constructor C' with signature

Cumi— - —Th—T0
then the equation for toSpine takes the form
toSpine (C'xy ... y:lo) = Con c o (x1:11) 0+ 0 (xp: ty)

where c is the annotated version of C and {; is the type representation of 7;. The
equation is only valid if vars (1) U---Uwars (t,) C vars (1), that is, if C’s type
signature contains no existentially quantified type variables (see also below).

The spine view is particularly easy to use: the generic part of a generic function
only has to consider two cases: Con and ‘¢ .

A further advantage of the spine view is its generality: it is applicable to a
large class of datatypes. Nested datatypes, for instance, pose no problems: the
type of perfect binary trees (see Section [3.2)

data Perfect o = Zero o | Succ (Perfect (o, o))
gives rise to the following two equations for toSpine:

toSpine (Zero x : Perfect a) = Con zero ¢ (z: a)
toSpine (Succ x : Perfect a) = Con succ ¢ (x : Perfect (Pair a a))

The equations follow exactly the general scheme above. We have also seen that
the scheme is applicable to generalised algebraic datatypes. Consider as an ex-
ample the typed representation of expressions (see Section 2.2)).

data Expr :: * — % where
Num :: Int — Expr Int
Plus :: Expr Int — Expr Int — Expr Int
Eq :: Expr Int — Expr Int — Expr Bool
If :: Expr Bool — Expr a — Expr a — Expr «

The relevant equations for toSpine are
toSpine (Num i : Expr Int) = Con num ¢ (i : Int)

toSpine (Plus ey ez : Expr Int) = Con plus ¢ (e1 : Expr Int) ¢ (ex : Expr Int)
toSpine (Eq ey ey : Expr Bool) = Con eq ¢ (€1 : Ezpr Int) ¢ (e : Expr Int)

Generic Programming, Now! 187

toSpine (If ey es es: Expr a)
= Con if ¢ (e1 : Expr Bool) ¢ (ez : Expr a) ¢ (e3 : Expr a)

Given this definition we can apply pretty to values of type Expr without further
ado. Note in this respect that the Glasgow Haskell Compiler (GHC) currently
does not support deriving (Show) for GADTs. When we turned Dynamic into a
representable type (Section B4l), we discussed one limitation of the spine view: it
cannot, in general, cope with existentially quantified types. Consider, as another
example, the following extension of the expression datatype:

Apply :: Expr (« — 3) — Expr e — Expr 8
The equation for toSpine

toSpine (Apply [x : Expr b)
= Con apply o (f : Expr (a — b)) ¢ (z: Expr a) -- not legal Haskell

is not legal Haskell, as a, the representation of «, appears free on the right-hand
side. The only way out of this dilemma is to augment z by a representation of
its type, as in Dynamicﬁ

To summarise: a data declaration describes how to construct data; the spine
view captures just this. Consequently, it is applicable to almost every datatype
declaration. The other views are more restricted: Generic Haskell’s original sum-
of-products view is only applicable to Haskell 98 types excluding GADTs and
existential types (however, we will show in Section 4] how to extend the sum-
of-products view to GADTSs); PolyP is even restricted to fixed points of regular
functors excluding nested datatypes and higher kinded types.

On the other hand, the classic views provide more information, as they repre-
sent the complete datatype, not just a single constructor application. The spine
view effectively restricts the class of functions we can write: one can only define
generic functions that consume or transform data (such as show) but not ones
that produce data (such as read). The uniform view on individual constructor
applications is useful if you have data in your hands, but it is of no help if you
want to construct data. We make this more precise in the following section.

Furthermore, functions that abstract over type constructors (such as size or
map) are out of reach for the spine view. In the following two sections we show
how to overcome both limitations.

5.2 The Type-Spine View

A generic consumer is a function of type Type a —a—7 (= Typed aa— 1), where
the type we abstract over occurs in an argument position and possibly in the
result type 7. We have seen in Section that the generic part of a consumer
follows the general pattern below.

5 Type-theoretically, we have to turn the existential quantifier Jo . 7 into an in-
tensional quantifier da . Type a x 7. This is analogous to the difference between
parametrically polymorphic functions of type Va . 7 and overloaded functions of
type Va . Type a — 7.

188 R. Hinze and A. Loh

consume :: Type a— o—T

consume a © = consume (toSpine (z: a))
consume ::Spinea — T
consume ... = ...

The element x is converted to the spine representation, over which the helper
function consume then recurses. By duality, we would expect that a generic
producer of type Type o — 7 — «a, where « appears in the result type but not in
7, takes on the following form.

produce :: Type a — 7 — «

produce a t = fromSpine (produce t)
produce :: T — Spine @ -- does not work
produce ... = ...

The helper function produce generates an element in spine representation, which
fromSpine converts back. Unfortunately, this approach does not work. The for-
mal reason is that toSpine and fromSpine are different beasts: toSpine is an
overloaded function, while fromSpine is parametrically polymorphic. If it were
possible to define produce ::Va . T— Spine a, then the composition fromSpine .
produce would yield a parametrically polymorphic function of type Va . 7 —
which is the type of an unsafe cast operation. And, indeed, a closer inspection
of the catch-all case of produce reveals that a, the type representation of «,
does not appear on the right-hand side. However, as we already know, a truly
polymorphic function cannot exhibit type-specific behaviour.

Of course, this does not mean that we cannot define a function of type
Type o — 7 — a. We just require additional information about the datatype,
information that the spine view does not provide. Consider in this respect the
syntactic form of a GADT (eg Type itself or Expr in Section 22)): a datatype is
essentially a sequence of signatures. This motivates the following definitions.

type Datatype oo = [Signature «]

infixl 0 o
data Signature :: * — x where
Sig :: Constr a — Signature «
(o) :: Signature (a« — () — Type ao — Signature 3

The type Signature is almost identical to the Spine type, except for the second
argument of ‘0’, which is of type Type a rather than Typed . Thus, an element
of type Signature contains the types of the constructor arguments, but not the
arguments themselves. For that reason, Datatype is called the type-spine view.
This view is similar to the sum-of-products view (see Section BA): the list
encodes the sum, the constructor ‘0’ corresponds to a product and Sig is like
the unit element. To be able to use the type spine view, we additionally require

Generic Programming, Now! 189

an overloaded function that maps a type representation to an element of type
Datatype a.

open datatype :: Type a — Datatype «

datatype (Bool) = [Sig false, Sig true]

datatype (Char) = [Sig (char ¢) | ¢ — [minBound .. maxBound]]
datatype (Int) = [Sig (int i) | i < [minBound .. mazrBound]]
datatype (List a) = [Sig nil, Sig cons 0 a 0 List a]

datatype (Pair a b) = [Sig pair 0 a0 b]

datatype (Tree a) = [Sig empty, Sig node o Tree a 0 a0 Tree a]

Here, char maps a character to its annotated variant and likewise int; nil, cons
and pair are the annotated versions of Nil, Cons and ‘(,)’. As an aside, the
second and the third equation produce rather long lists; they are only practical
in a lazy setting. The function datatype plays the same role for producers as
toSpine plays for consumers.

The first example of a generic producer is a simple test-data generator. The

function generate a d yields all terms of the data type a up to a given finite
depth d.

generate :: Type a — Int — [«]
generate a 0 =]
generate a (d + 1) = concat [generate s d | s < datatype a]

generate :: Signature o — Int — [«]
generate (Sig ¢) d = [constr c]
generate (soa) d=|[f z|f < generate s d,z «— generate a d]

The helper function generate constructs all terms that conform to a given sig-
nature. The right-hand side of the second equation essentially computes the
cartesian product of generate s d and generate a d. Here is a short interactive
session that illustrates the use of generate.

Now) generate (List Bool) 3
[[], [False], | False, False], | False, True], [True], | True, False], [True, True]]
Now) generate (List (List Bool)) 3

[0 L1 [0, 000, [[Falsel], [False], [1], [True]], [True], []]]

As a second example, let us define a generic parser. For concreteness, we re-
implement Haskell’s readsPrec function of type Int— ReadS «. The Int argument
specifies the operator precedence of the enclosing context; ReadS abbreviates
String — [Pair « String], the type of backtracking parsers [26].

open readsPrec :: Type a — Int — ReadS «
readsPrec (Char) d = readsPrecchar d
readsPrec (Int) d = readsPrecin; d
readsPrec (String) d = readsPrecsiing d
readsPrec (List a) d = readsList (reads a)

190 R. Hinze and A. Loh

readsPrec (Pair a b) d

= readParen False (Asop — [((x,y),85) | (" (", $1) « lex 505
(z, $2)« reads a s1,
(", s3) « lex S2,
(y, s4) <« reads b ss,
("M s5) — lex s4])

readsPrec a d
= alt [readParen (arity’ s >0 A d > 10) (reads s) | s < datatype a]

The overall structure is similar to that of pretty. The first three equations del-
egate the work to tailor-made parsers. Given a parser for elements, readsList,
defined in Appendix[A3] parses a list of elements. Pairs are read using the usual
mix-fix notation. The predefined function readParen b takes care of optional
(b = False) or mandatory (b = True) parentheses. The catch-all case implements
the generic part: constructors in prefix notation. Parentheses are mandatory if
the constructor has at least one argument and the operator precedence of the
enclosing context exceeds 10 (the precedence of function application is 11). The
parser for « is the alternation of all parsers for the individual constructors of «
(alt is defined in Appendix [A3)). The auxiliary function reads parses a single
constructor application.

reads :: Signature @ — ReadS «
reads (Sig c) so = [(constr ¢, s1) | (t,$1) < lex so, name ¢ == t]
reads (soa) so = [(f z,s2) | (f, s1) < reads s so,

(z, s2) < readsPrec a 11 $1]

Finally, arity’ determines the arity of a constructor.

arity’ :: Signature o — Int
arity’ (Sig ¢) =0
arity’ (soa) = arity’ s + 1

As for pretty, we can define suitable wrapper functions that simplify the use of
the generic parser.

reads :: Type a — ReadS «
reads a = readsPrec a 0
read :: Type av — String — «
read a s = case [z | (z,t) < reads a s,("","") « lex t] of
[z] =z
[] — error "read: no parse"
— error "read: ambiguous parse"

From the code of generate and readsPrec we can abstract a general definitional
scheme for generic producers.

produce :: Type a — 7 — «

Generic Programming, Now! 191

produce a t = ...[...produce st...|s— datatype a]
produce :: Signature o — T — «
produce ... = ...

The generic case is a two-step procedure: the list comprehension processes the list
of constructors; the helper function produce takes care of a single constructor.

The type-spine view is complementary to the spine view, but independent of
it. The latter is used for generic producers, the former for generic consumers or
transformers. This is in contrast to Generic Haskell’s sum-of-products view or
PolyP’s fixed point view where a single view serves both purposes.

The type-spine view shares the major advantage of the spine view: it is ap-
plicable to a large class of datatypes. Nested datatypes such as the type of perfect
binary trees can be handled easily:

datatype (Perfect a) = [Sig zero o a, Sig succ 0 Perfect (Pair a a)]

The scheme can even be extended to generalised algebraic datatypes. Since
Datatype « is a homogeneous list, we have to partition the constructors according
to their result types. Consider the expression datatype of Section We have
three different result types, Expr Bool, Expr Int and Expr «, and consequently
three equations for datatype.

datatype (Ezpr Bool)
= [Sig eq o Expr Int o Expr Int,
Sig if o Expr Bool o Expr Bool o Expr Bool
datatype (Expr Int)
= [Sig num o Int,
Sig plus 0 Exzpr Int o Expr Int,
Sig if o Exzpr Bool o Expr Int o Expr Int]
datatype (Ezpr a)
= [Sig if o Exzpr Bool o Expr a o Ezpr a]

The equations are ordered from specific to general; each right-hand side lists
all the constructors that have the given result type or a more general one.
Consequently, the If constructor, which has a polymorphic result type, appears
in every list. Given this declaration we can easily generate well-typed expressions
(for reasons of space we have modified generate Int so that only 0 is produced):

Now) let gen a d = putStrLn (show (generate a d : List a))

Now) gen (Expr Int) 4

[(Num 0),(Plus (Num 0) (Num 0)), (Plus (Num 0) (Plus (Num 0) (Num
0))), (Plus (Plus (Num 0) (Num 0)) (Num 0)), (Plus (Plus (Num 0) (Num
0)) (Plus (Num 0) (Num 0))), (If (Eq (Num 0) (Num 0)) (Num 0) (Num
0)), (If (Eq (Num 0) (Num 0)) (Num 0) (Plus (Num 0) (Num 0))), (If (Eq
(Num 0) (Num 0)) (Plus (Num 0) (Num 0)) (Num 0)), (f (Eq (Num O)
(Num 0)) (Plus (Num 0) (Num 0)) (Plus (Num 0) (Num 0)))]

Now) gen (Expr Bool) 4

192 R. Hinze and A. Loh

[(Eq (Num 0) (Num 0)), (Eq (Num 0) (Plus (Num 0) (Num 0))), (Eq (Plus
(Num 0) (Num 0)) (Num 0)), (Eq (Plus (Num 0) (Num 0)) (Plus (Num 0)
(Num 0))), (If (Eq (Num 0) (Num 0)) (Eq (Num 0) (Num 0)) (Eq (Num 0)
(Num. 0))

Now) gen (Expr Char) 4

[]

The last call shows that there are no character expressions of depth 4.
In general, for each constructor C with signature

Cum— = Th—1T0
we add an element of the form
Sigcotio---0t,

to each right-hand side of datatype t provided 7y is more general than 7.

5.3 Lifted Spine View

We have already mentioned that the original spine view is not suitable for defin-
ing *— x-indexed functions, as it cannot capture type abstractions. To illustrate,
consider a variant of Tree whose inner nodes are annotated with an integer, say,
a balance factor.

data BalTree « = Empty | Node Int (BalTree o) o (BalTree «)

If we call a generic function on a value of type BalTree Int, then the two integer
components — the labels and the balance factors — are handled in a uniform
way. This is fine for generic functions on types, but not acceptable for generic
functions on type constructors. For instance, a generic version of sum must
consider the label of type a = Int, but ignore the balance factor of type Int. In
the sequel we introduce a suitable variant of Spine that can be used to define
the latter brand of generic functions.

A constructor of a lifted type has the signature Vx . 7 x — - — 7, x =7} X
where the type variable xy marks the parametric components. We can write the
signature more perspicuously as Vx . (1] —' -+ =’ 7, =’ 7)) x, using the lifted
function space:

infixr —/
newtype (o —' 1) x = Fun{app :: ¢ x =9 x}

For technical reasons, ‘—’’ must be defined by a newtype rather than a type
declaration[As an example, here are variants of Nil’ and Cons’:

nil’ Vx.Va . (List’ o) x
nil’ = Nil'

5 In Haskell, types introduced by type declarations cannot be partially applied.

Generic Programming, Now! 193

cons’ :: Vx . Vo' . (o =’ List’ o/ —' List’ o’) x
cons’ = Fun (Ax — Fun (Azs — Cons’ x xs))

An element of a lifted type can always be put into the applicative form ¢’ ‘app*
e1 ‘app’ -+ ‘app’ e,. As in the first-order case we can make this structure visible
and accessible by marking the constructor and the function applications.

data Spine’ :: (* — %) — * — x where
Con’ :: (Vx . ¢ x) — Spine’ p a
(¢) ::Spine’ (¢ =" ¥) o — Typed’ ¢ o — Spine’ ¢ «

The structure of Spine’ is very similar to that of Spine, except that we are now
working in a higher realm: Con’ takes a polymorphic function of type Yy .
© x to an element of Spine’ ; the constructor ‘¢’ applies an element of type
Spine’ (¢ =" 1) to a Typed’ ¢ yielding an element of type Spine’ 1.

Turning to the conversion functions, fromSpine’ is again polymorphic.

fromSpine’ :: Spine’ p o — p
fromSpine’ (Con’ ¢) = ¢
fromSpine’ (f o') = fromSpine’ f ‘app‘ val’

Its inverse is an overloaded function that follows a pattern similar to toSpine:
each constructor C’ with signature

C' V. 1ixX— = Th X—T)X

gives rise to an equation of the form

toSpine’ (C" @1 ... ' th) = Con ¢’ o (x1:4) 00 (y: 1))
where ¢’ is the variant of C’ that uses the lifted function space and ¢/ is the type
representation of the lifted type 7/. As an example, here is the instance for lifted
lists.

toSpine’ :: Typed’ ¢ a — Spine’ ¢
toSpine’ (Nil':" List’ a') = Con/ nil’
toSpine’ (Cons’ x xs ' List' a') = Con’ cons’ o' (z:" a’) ¢’ (xs ' List’ a’)

The equations are surprisingly close to those of toSpine; pretty much the only
difference is that toSpine’ works on lifted types.

Let us make the generic view explicit. In our case, the structure view of ¢ is
simply Spine’ ¢.

Spine’ :: Type' ¢ — Type’ (Spine’ @)
spine’ :: Type’ ¢ — View' ¢

spine’ o' = View' (Spine’ a') (Ax — toSpine’ (z:' a’)) fromSpine’

Given these prerequisites we can turn size (see Section L)) into a generic
function.

194 R. Hinze and A. Loh

size (z ' Spine’ a') = size x
size (z: a’) = case spine’ o’ of
View’ b from to — size (from x:' b')

The catch-all case applies the spine view: the argument z is converted to the
structure type, on which size is called recursively. Currently, the structure type is
always of the form Spine’ ¢ (this will change in a moment), so the first equation
applies, which in turn delegates the work to the helper function size .

size :: Spine’ p a — Int
size (Con’ ¢) =0
size (fo'z) =size [+ sizex

The implementation of size is entirely straightforward: it traverses the spine,
summing up the sizes of the constructor’s arguments. It is worth noting that the
catch-all case of size subsumes all the previous instances except the one for Id, as
we cannot provide a toSpine’ instance for the identity type. In other words, the
generic programmer has to take care of essentially three cases: Id, Con’ and ‘¢o”’.

As a second example, here is an implementation of the generic mapping
function:

map :: Type' o — (a —) — (¢ a — ¢)

map Id m = Ing . m . outy
map (Spine’ a’) m = map m
map a’ m = case spine’ o’ of

View’ b’ from to — to . map b’ m . from
map :: (a« — B) — (Spine’ ¢ o — Spine’ p)
map m (Con’ c) = Con’ ¢
map m (f o' (x a))=map m fo' (map ' mz: a)

The definition is stunningly simple: the argument function m is applied in the Id
case; the helper function map applies map to each argument of the constructor.
Note that the mapping function is of type Type’ ¢ — (a —) — (p a — ¢)
rather than (o« —) — (Typed’ ¢ o — ¢ [3). Both variants are interchangeable,
so picking one is just a matter of personal taste.

Bridging the Gap. We have noted in Section L Ilthat the generic size function
does not work on the original, unlifted types, as they are different from the lifted
ones. However, both are closely related: if 7/ is the lifted variant of 7, then 7 Id
is isomorphic to 7 [15]. (This relation only holds for Haskell 98 types, not for
GADTs; see also below.) Even more, 7/ Id and 7 can share the same run-time
representation, since Id is defined by a newtype declaration and since the lifted
datatype 7’ has exactly the same structure as the original datatype 7.

As an example, the functions fromList Inyg and toList outy exhibit the iso-
morphism between [] and List’ Id.

fromList :: (¢ — o' x) — ([a] — List’ o’ x)
fromList from Nil = Nil'
fromList from (Cons x xs) = Cons’ (from z) (fromList from xs)

Generic Programming, Now! 195

toList (o) x — a) — (List’ o/ x — [«])
toList to Nil' = Nil
toList to (Cons’ x xs) = Cons (to x) (toList to xs)

Operationally, if the types 7’ |d and 7 have the same run-time representation,
then fromList Inig and toList out)q are identity functions (the Haskell Report
[38] guarantees this for Inig and outq).

We can use the isomorphism to broaden the scope of generic functions to
unlifted types. To this end we simply re-use the view mechanism.

spine’ List = View’ (List’ Id) (fromList Inyg) (toList outyq)
The following interactive session illustrates the use of size.

Now) let ts = [tree [0..7 ::Int] | i < [0..9]]

Now) size (ts:' List)

10

Now) size (fromList (fromTree Inyy) ts:' List’ (Tree’ Int'))
0

Now) size (Inyg ts ' Id)

1

Now) size (fromList Inyg ts ' List’ Id)

10

Now) size (fromList (fromTree Inyg) ts " List’ (Tree’ 1d))
55

With the help of the conversion functions we can implement each of the four
different views on a list of trees of integers. Since Haskell employs a kinded
first-order unification of types [28], the calls almost always additionally involve
a change on the value level. The type equation ¢ 7 = List (Tree Int) is solved
by setting ¢ = List and 7 = Tree Int, that is, Haskell picks one of the four
higher-order unifiers. Only in this particular case we need not change the rep-
resentation of values: size (ts: List) implements the intended call. In the other
cases, List (Tree Int) must be rearranged so that the unification with ¢ 7 yields
the desired choice.

Discussion. The lifted spine view is almost as general as the original spine view:
it is applicable to all datatypes that are definable in Haskell 98. In particular,
nested datatypes can be handled with ease. As an example, for the datatype
Perfect (see Section B2)), we introduce a lifted variant

data Perfect’ o/ x = Zero’ (o x) | Succ’ (Perfect’ (Pair’ o/ o) x)

Perfect :: Type' Perfect

Perfect’ :: Type’ o — Type' (Perfect’)

toSpine’ (Zero' x ! Perfect’ a’) = Con’ zero’ ¢' (z ' a’)

toSpine’ (Succ’ x ' Perfect’ a') = Con' succ’ o' (x " Perfect’ (Pair’ o' a’))

and functions that convert between the lifted and the unlifted variant.

196 R. Hinze and A. Loh

spine’ (Perfect)
= View' (Perfect’ Id) (fromPerfect Inyg) (toPerfect outiq)
fromPerfect :: (a¢ — o x) — (Perfect « — Perfect’ o x)
fromPerfect from (Zero x) = Zero' (from)
fromPerfect from (Succ z) = Succ’ (fromPerfect (fromPair from from) x)

toPerfect :: (o x — a) — (Perfect’ o/ x — Perfect «)
toPerfect to (Zero' x) = Zero (to 1)
toPerfect to (Succ’ x) = Succ (toPerfect (toPair to to) x)

The following interactive session shows some examples involving perfect trees.

Now) size (Succ (Zero (1,2)) ! Perfect)

2

Now) map (Perfect) (+1) (Succ (Zero (1,2)))
Suce (Zero (2,3))

We have seen that the spine view is also applicable to generalised algebraic
datatypes. This does not hold for the lifted spine view, as it is not possible
to generalise size or map to GADTs. Consider the expression datatype of Sec-
tion 2221 Though Expr is parametrised, it is not a container type: an element of
Expr Int, for instance, is an expression that evaluates to an integer; it is not a
data structure that contains integers. This means, in particular, that we cannot
define a mapping function (o« —) — (Expr a — Expr 3): How could we possibly
turn expressions of type Expr « into expressions of type Expr 37 The type Expr (8
might not even be inhabited: there are, for instance, no terms of type Expr 10.
Since the type argument of Expr is not related to any component, Expr is also
called a phantom type [3217].

It is instructive to see where the attempt to generalise size or map to GADTs
fails technically. We can, in fact, define a lifted version of the Expr type (we
confine ourselves to one constructor).

data Expr’ :: (x — %) — * — x where
Num/ :: Int’ x — Expr’ Int’ x

However, we cannot establish an isomorphism between Expr and Expr’ Id: the
following code simply does not type-check.

fromEzpr :: (o — o x) — (Expr o — Expr’ &' x)
fromEzpr from (Num i) = Num’ (Inj,w i) -- wrong: does not type-check

The isomorphism between 7 and 7’ Id only holds for Haskell 98 types.

We have seen two examples of generic consumers or transformers. As in the
first-order case, generic producers are out of reach, and for exactly the same
reason: fromSpine’ is a polymorphic function while toSpine’ is overloaded. Of
course, the solution to the problem suggests itself: we must also lift the type-spine
view to type constructors of kind *—x. In a sense, the spine view really comprises
two views: one for consumers and transformers and one for pure producers.

Generic Programming, Now! 197

The spine view can even be lifted to kind indices of arbitrary kinds. The
generic programmer then has to consider two cases for the spine view and addi-
tionally n cases, one for each of the n projection types Outy, ..., Out,.

Introducing lifted types for each possible type index sounds like a lot of work.
Note, however, that the declarations can be generated completely mechanically
(a compiler could do this easily). Furthermore, we have already noted that
generic functions that are indexed by higher kinds, for instance, by (x—%)—%—x,
are rare. In practice, most generic functions are indexed by a first-order kind such
as * or x — *.

5.4 Sum of Products

Let us now turn to the ‘classic’ view of generic programming: the sum-of-products
view, which is inspired by the semantics of datatypes. Consider the schematic
form of a Haskell 98 data declaration.

dataTa1 as:Cl T1,1 .- Tl,ml""|CnTn,1 cor Tnomg,

The data construct combines several features in a single coherent form: type
abstraction, n-ary disjoint sums, n-ary cartesian products and type recursion.
We have already the machinery in place to deal with type abstraction (type
application) and type recursion: using type reflection, the type-level constructs
are mapped onto value abstraction and value recursion. It remains to model n-
ary sums and n-ary products. The basic idea is to reduce the n-ary constructs
to binary sums and binary products.

infixr 7 x
infixr 6 +

data Zero

data Unit = Unit
dataa+ g =1Inla|Inrf

data « x 8 = Pair{outl :: o, outr :: 3}

The Zero datatype, the empty sum, is used for encoding datatypes with no
constructors; the Unit datatype, the empty product, is used for encoding con-
structors with no arguments. If a datatype has more than two alternatives or a
constructor more than two arguments, then the binary constructors ‘+” and ‘x’
are nested accordingly. With respect to the nesting there are several choices: we
can use a right-deep or a left-deep nesting, a list-like nesting or a (balanced) tree-
like nesting [34]. For the following examples, we choose — more or less arbitrarily
— a tree-like encoding.
We first add suitable constructors to the type of type representations.

infixr 7 x
infixr 6 +

o :: Type Zero

198 R. Hinze and A. Loh

1 Type Unit
(+) :: Type a — Type 3 — Type (a + 3)
(x) :: Type a — Type 8 — Type (a x [3)

The view function for the sum-of-products view is slightly more elaborate
than the one for the spine view, as each datatype has a tailor-made structure

type: Bool has the structure type Unit + Unit, [a] has Unit + a X [a] and finally
Tree a has Unit + Tree a X v x Tree a.

structure :: Type a — View «
structure Bool = View (1 + 1) fromBool toBool
where
fromBool :: Bool — Unit 4 Unit
fromBool False = Inl Unit
fromBool True = Inr Unit
toBool :: Unit 4+ Unit — Bool
toBool (Inl Unit) = False
toBool (Inr Unit) = True
structure (List a) = View (1 + a x List a) fromList toList

where

fromList ::[a] — Unit + a x [«]
fromList Nil = Inl Unit
fromList (Cons © xs) = Inr (Pair x s)
toList :: Unit + o x [a] — [«]

toList (Inl Unit) = Nil

toList (Inr (Pair x xs)) = Cons x s
structure (Tree a) = View (1 + Tree a x a X Tree a) fromTree toTree

where

fromTree :: Tree a — Unit + Tree @ X o X Tree «
fromTree Empty = Inl Unit

fromTree (Node | x 1) = Inr (Pair | (Pair z)
toTree ::Unit 4+ Tree a X @ X Tree a« — Tree

toTree (Inl Unit) = Empty

toTree (Inr (Pair | (Pair z 1))) = Node l © r

Two points are worth noting. First, we only provide structure types for concrete
types that are given by a data or a newtype declaration. Abstract types includ-
ing primitive types such as Char or Int cannot be treated generically; for these
types the generic programmer has to provide ad-hoc cases. Second, the struc-
ture types are not recursive: they express just the top ‘layer’ of a data element.
The tail of the encoded list, for instance, is again of type [«], the original list
datatype. We could have used explicit recursion operators but these are clumsy
and hard to use in practice. Using an implicit approach to recursion has the
advantage that there is no problem with mutually recursive datatypes, nor with
datatypes with many parameters.

A distinct advantage of the sum-of-products view is that it provides more
information than the spine view, as it represents the complete data type, not

Generic Programming, Now! 199

just a single constructor application. Consequently, the sum-of-products view
can be used for defining both consumers and producers. The function memo,
which memoises a given function, is an intriguing example of a function that
both analyses and synthesises values of the generic type.

memo :: Type @ — (o = v) — (o — v)

memo Char f ¢ = f ¢ -- no memoisation
memo Int fi = f i -- no memoisation
memo 1 f Unit = funit

where fynt = f Unit
memo (a + b) [(Inl) = fru

where [, = memo a (A\x — f (Inl x))
memo (a 4+ b) f (Inry) = frur y

where [, =memo b (A\y — f (Inr y))
memo (a X b) f (Pair z y) = (fpair) y

where fpair = memo a (A\x — memo b (\y — f (Pair z y)))
memo a [z = [View T

where [yiew = case structure a of

View b from to — memo b (f . to) . from

To see how memo works, note that the helper definitions fynit, finis finr, fPair
and fyiew do not depend on the actual argument of f. Thus, once f is given,
they can be readily computed. Memoisation relies critically on the fact that they
are computed only on demand and then at most once. This is guaranteed if the
implementation is fully lazy. Usually, memoisation is defined as the composition
of a function that constructs a memo table and a function that queries the
table [I4]. If we fuse the two functions, thereby eliminating the memo data
structure, we obtain the memo function above. Despite appearances, the memo
data structures did not vanish into thin air. Rather, they are now built into
the closures. For instance, the memo table for a disjoint union is a pair of memo
tables. The closure for memo (a + b) f consequently contains a pair of memoised
functions, namely fr,; and fr,,.

The sum-of-products view is also preferable when the generic function has to
relate different elements of a datatype, the paradigmatic example being ordering.

compare :: Type @« — a — a — Ordering

compare Char ¢ Co = comparecy,, €1 C2
compare Int 7 19 = comparey,, 1 2
compare 1 Unit Unit = EQ

compare (a + b) (Inl x7) (Inl z3) = compare a z1 T2
compare (a + b) (Inl x1) (Inr y2) = LT

compare (a + b) (Inr y1) (Inl) = GT

compare (a + b) (Inr y1) (Inr y2) = compare b y1 ya

(

compare (a X b) (Pair x1 y1) (Pair z3 y2)
= case compare a 1y Ty of
EQ — compare b i1 1o
ord — ord

200 R. Hinze and A. Loh

compare a T1 T2
= case structure a of
View b from to — compare b (from x1) (from x2)

The central part of the definition is the case for sums: if the constructors are equal,
then we recurse on the arguments, otherwise we immediately return the relative
ordering (assuming Inl < Inr). The case for products implements the so-called lex-
icographic ordering: the ordering of two pairs is determined by the first elements,
and only if they are equal do we recurse on the second elements.

Implementing compare using the spine view faces the problem that the el-
ements of a spine possess existentially quantified types: even if we know that
the constructors of two values are identical, we cannot conclude that the types
of corresponding arguments are the same — and, indeed, this property fails,
for instance, for the type Dynamic. Consequently, a spine-based implementation
of compare must either involve a dynamic type-equality check, or the type of
compare must be generalised to

compare :: Type a« — o — Type 3 — [— Ordering

The latter twist is not without problems, as we have to relate elements of different
types.

The sum-of-products view in its original form is more restricted than the spine
view: it is only applicable to Haskell 98 datatypes. However, using a similar tech-
nique to that in Section [5.2] we can to broaden the scope of the sum-of-products
view to include generalised algebraic datatypes. A GADT introduces a family of
Haskell 98 types indexed by the type argument of the GADT. If we partition the
constructors according to their result types, we can provide an individual view
for each instance. Consider the expression datatype of Section We have
three different result types, Expr Bool, Expr Int and Expr «, and consequently
three equations for structure.

structure (Ezpr Bool) = View expr fromExpr toEzpr

where
expr = Expr Int x Expr Int +
Ezpr Bool x Ezpr Bool x Ezpr Bool
fromEzxpr (Eq 21 12) = Inl (Pair z; x2)
fromExpr (If 21 22 23) = Inr (Pair z; (Pair z2 x3))

toExpr (Inl (Pair z1 12)) = Eq 11 T2
toExpr (Inr (Pair z; (Pair x2 x3)))

= If Tl T2 I3
structure (Ezpr Int) = View expr fromExpr toEzpr
where
expr = Int +

FExpr Int x FExpr Int +
Ezxpr Bool x FExpr Int x Fxpr Int

fromExpr (Num 1) =1Inl1i

Generic Programming, Now! 201

fromExpr (Plus ©1 2) = Inr (Inl (Pair z; x2))
fromExpr (If 21 22 23) = Inr (Inr (Pair zy (Pair x2 23)))
toExzpr (Inl 7) = Num i
toExzpr (Inr (Inl (Pair oy x2)))
= Plus z1 22
toExpr (Inr (Inr (Pair x; (Pair x5 13))))
= If Tl T2 I3
structure (Ezpr a) = View expr fromEzxpr toEzpr
where
expr = FEzxpr Bool x Ezxpr a X Expr a
fromExpr (If 1 x5 x3) = Pair x; (Pair zy x3)

toExzpr (Pair xy (Pair o x3)) = If 21 22 23
For the details we refer to the description of datatype in Section (.21

5.5 Lifted Sums of Products

The sum-of-products view can be quite easily adapted to the type Type’ of lifted
type representations. We only have to lift the type constructors of the structure

types.
infixr 7 x’
infixr 6 +’
data Zero’ «
data Unit’ « = Unit’
data (¢ +' ¥) a = Inl’ (¢ @) | Int’ (¢ @)
data (¢ x’ ¢) a = Pair'{outl’ :: ¢ o, outr’ ::) a}

The reader may wish to fill in the details.

6 Related Work

There is a wealth of material on the subject of generic programming. The tuto-
rials of previous summer schools [2120019] provide an excellent overview of the
field.

We have seen that support for generic programming consists of three essential
ingredients:

— a type reflection mechanism,
— a type representation, and
— a generic view on data.

The first two items provide a way to write overloaded functions, and the third a
way to access the structure of values in a uniform way. The different approaches
to generic programming can be faithfully classified along these dimensions. Fig-
ure [I] provides an overview of the design space. Since the type representation is

202 R. Hinze and A. Loéh
view(s) representation of overloaded functions
type reflection type classes type-safe cast specialisation
none - - -
ITA [[2R/7E1A3]
fixed point Reloaded [23] PolyP [36I37 - PolyP [27]
sum-of-products LIGD [5I17] DTC [25], -
G [, GH [16/20/34135]
GM [18]
spine Reloaded [23], SYB [31], SYB [39/30] -

Revolutions Reloaded [24]
22]

Fig. 1. Generic programming: the design space

closely coupled to the generic view, we have omitted the representation dimen-
sion. The two remaining dimensions are largely independent of each other and
for each there are various choices. Overloaded functions can be expressed using

type reflection: This is the approach we have used in these lecture notes.
Its origins can be traced back to the work on intensional type analysis
[T2U87I41)44] (ITA). ITA is intensively used in typed intermediate languages,
in particular, for optimising purely polymorphic functions. Type reflection
avoids the duplication of features: a type case, for instance, boils down to an
ordinary case expression. Cheney and Hinze [5] present a library for gener-
ics and dynamics (LIGD) that uses an encoding of type representations in
Haskell 98 augmented by existential types.

type classes [I1]: Type classes are Haskell’s major innovation for supporting
ad-hoc polymorphism. A type class declaration corresponds to the type sig-
nature of an overloaded value — or rather, to a collection of type signatures.
An instance declaration is related to a type case of an overloaded value. For a
handful of built-in classes, Haskell provides support for genericity: by attach-
ing a deriving clause to a data declaration the Haskell compiler automat-
ically generates an appropriate instance of the class. Derivable type classes
(DTC) [25] generalise this feature to arbitrary user-defined classes. A simi-
lar, but more expressive variant is implemented in Generic Clean [I] (GC).
Clean’s type classes are indexed by kind, so that a single generic function can
be applied to type constructors of different kinds. A pure Haskell 98 imple-
mentation of generics (GM) is described by Hinze [I8]. The implementation
builds upon a class-based encoding of the type Type of type representations.
type-safe cast [45]: A cast operation converts a value from one type to an-
other, provided the two types are identical at run-time. A cast can be seen
as a type-case with exactly one branch. The original SYB paper [39)] is based
on casts.

Generic Programming, Now! 203

— specialisation [15]: This implementation technique transforms an overloaded
function into a family of polymorphic functions (dictionary translation).
While the other techniques can be used to write a library for generics, spe-
cialisation is mainly used for implementing full-fledged generic programming
systems such as PolyP [27] or Generic Haskell [35], that are set up as pre-
processors or compilers.

The approaches differ mostly in syntax and style, but less in expressiveness —
except perhaps for specialisation, which cannot cope with higher-order generic
functions. The second dimension, the generic view, has a much larger impact: we
have seen that it affects the set of datatypes we can cover, the class of functions
we can write and potentially the efficiency of these functions.

— no view: Haskell has a nominal type system: each data declaration intro-
duces a new type that is incompatible with all the existing types. Two types
are equal if and only if they have the same name. In contrast, in a struc-
tural type system two types are equal if they have the same structure. In a
language with a structural type system, there is no need for a generic view;
a generic function can be defined exhaustively by induction on the structure
of types. The type systems that underlie ITA are structural.

— fixed point view: PolyP [27] views data types as fixed points of regular
functors, which are in turn represented as lifted sums of products. This
view is quite limited in applicability: only datatypes of kind * — % that are
regular can be represented, excluding nested datatypes and higher kinded
datatypes. Its particular strength is that recursion patterns such as cata-
or anamorphisms can be expressed generically, because each datatype is
viewed as a fixed point, and the points of recursion are visible. The original
implementation of PolyP is set up as a preprocessor that translates PolyP
code into Haskell. A later version [36] embeds PolyP programs into Haskell
augmented by multiple parameter type classes with functional dependencies
[29]. Oliveira and Gibbons [37] present a lightweight variant of PolyP that
works within Haskell 98.

— sum-of-products view: Generic Haskell [20134]35] (GH) builds upon this view.
In its original form it is applicable to all datatypes that are definable in
Haskell 98. We have seen in Section [.4] that it can be generalised to GADTs.
Generic Haskell is a full-fledged implementation of generics based on ideas
by Hinze [16121] that features generic functions, generic types and various
extensions such as default cases and constructor cases [6]. Generic Haskell
supports the definition of functions that work for all types of all kinds, such
as, for example, a generalised mapping function.

— spine views: The spine view treats data uniformly as constructor applica-
tions. The SYB approach has been developed by Lammel and Peyton Jones
in a series of papers [B9B0/3T]. The original approach is combinator-based:
the user writes generic functions by combining a few generic primitives. The
first paper [39] introduces two main combinators: a type-safe cast for defining
ad-hoc cases and a generic recursion operator, called gfoldl, for implement-
ing the generic part. It turns out that gfoldl is essentially the catamorphism

204 R. Hinze and A. Loh

of the Spine datatype [23]: gfoldl equals the catamorphism composed with
toSpine. The second paper [30] adds a function called gunfold to the set
of predefined combinators, which is required for defining generic produc-
ers. The name suggests that the new combinator is the anamorphism of the
Spine type, but it is not: gunfold is actually the catamorphism of Signature,
introduced in Section

A Library

This appendix presents some auxilliary functions used in the main part of the
chapter, but relegated here so as not to disturb the flow.

A.1 Binary Trees

The function inorder, used in Section [B.1] yields the elements of a tree in sym-
metric order.

inorder :: Va . Tree a — [a]
iorder Empty = Nil

inorder (Node 1 a r) = inorder | 4 [a] 4 inorder r

The function tree, also used in Section Bl turns a list of elements into a
balanced binary tree, a so-called Braun tree [4].

tree :: Vo . [a] — Tree «

tree x
| null x = Empty
| otherwise = Node (tree 11) a (tree x2)

where (11, Cons a x2) = splitAt (length = ‘div‘ 2)

The function perfect d a, used in Section [B.2] generates a perfect tree of depth d
whose leaves are labelled with as.

perfect :: Va . Int — a — Perfect a
perfect O a = Zero a
perfect (n+ 1) a = Succ (perfect n (a,a))

A.2 Text with Indentation

The pretty-printing library, used in Section [3] is implemented as follows.

data Text = Text String
| NL
| Indent Int Text
| Text : Text

text = Text
nl = NL

Generic Programming, Now! 205

indent = Indent

@) =0

Each Text-generating function is implemented by a corresponding data construc-
tor. The main work is done by the function render, which can be seen as an
interpreter for Text-documents.

render’ :: Int — Text — String — String

render’ i (Text s) z =s+Huz

render’ 1 NL z ="\n"H replicate i > ’ Hx
render’ i (Indent j d) © = render’ (i +7) d =

render’ i (dy) dp) = render’ i dy (render’ i dy)

render :: Text — String
render d = render’ 0 d ""

The functions append and bracketed are derived combinators:

append :: [Text] — Text
append = foldr () (text "")
bracketed :: [Text] — Text
bracketed Nil = text "[1"
bracketed (Cons d ds) = align "[" d
& append [nl & align ', " d | d — ds] & text "1

The function append concatenates a list of documents; bracketed produces a
comma-separated sequence of elements between square brackets.

Finally, we provide a Show instance for Text, which renders a text as a string
(this instance is particularly useful for interactive sessions).

instance Show Text where
showsPrec p © = render’ 0 =

A.3 Parsing

The type ReadS is Haskell’s parser type. The function alt, used in Section [5.2]
implements the alternation of a list of parsers.

alt :: [ReadS a] — ReadS «
alt rs = As — concatMap (Ar — 1 s) s

Give a parser for elements, readsList, also used in Section [5.2] parses a list of
elements written as a comma-separated sequence between square brackets.

readsList :: ReadS o — ReadS [«]
readsList r = readParen False (As — [z | ("[", s1) < lex 5,2 «— readl s1])
where readl s = [(Nil, s1) | ("I, 81) «— lex]
+ [(Cons z xs, 52) | (z, s1) <7 s,

206 R. Hinze and A. Loh
(zs, $2) «— readl’ s1]
readl’ s = [(Nil, s1) | ("1, s1) < lex]
+ [(Cons z s, 53) | (",", 81) «— lex s,
(iL', 52) S1,
(zs, s3) «— readl’ s2]

References
1. Alimarine, A., Plasmeijer, R.: A generic programming extension for Clean. In: Arts,

10.

11.

12.

13.

14.

T., Mohnen, M. (eds.) IFL 2002. LNCS, vol. 2312, Springer, Heidelberg (2002)
Backhouse, R., Jansson, P., Jeuring, J., Meertens, L.: Generic Programming: An
Introduction. In: Swierstra, S.D., Henriques, P.R., Oliveira, J.N. (eds.) AFP 1998.
LNCS, vol. 1608, pp. 28-115. Springer, Heidelberg (1999)

. Bird, R., Meertens, L.: Nested datatypes. In: Jeuring, J. (ed.) MPC 1998. LNCS,

vol. 1422 pp. 52-67. Springer, Heidelberg (1998)

Braun, W., Rem, M.: A logarithmic implementation of flexible arrays. Memoran-
dum MRS83/4, Eindhoven University of Technology (1983)

Cheney, J., Hinze, R.: A lightweight implementation of generics and dynamics.
In: Chakravarty, M.M.T. (ed.) Proceedings of the 2002 ACM SIGPLAN Haskell
Workshop, pp. 90-104. ACM Press, New York (2002)

Clarke, D., Loh, A.: Generic Haskell, specifically. In: Gibbons, J., Jeuring, J.
(eds.) Proceedings of the IFIP TC2 Working Conference on Generic Programming,
Schloss Dagstuhl, pp. 21-48. Kluwer Academic Publishers, Dordrecht (2002)
Crary, K., Weirich, S.: Flexible type analysis. ACM SIGPLAN Notices 34(9), 233—
248 (1999) (Proceedings of the fourth ACM SIGPLAN International Conference
on Functional Programming (ICFP ’99), Paris, France)

Crary, K., Weirich, S., Morrisett, G.: Intensional polymorphism in type-erasure
semantics. In: Proceedings of the ACM SIGPLAN International Conference on
Functional Programming (ICFP ’98), Baltimore, MD, vol. (34)1 of ACM SIGPLAN
Notices, pp. 301-312. ACM Press, New York (1999)

Fegaras, L., Sheard, T.: Revisiting catamorphisms over datatypes with embed-
ded functions (or, programs from outer space). In: Proceedings of the 23rd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, St. Pe-
tersburg Beach, Florida, United States, pp. 284-294 (1996)

Girard, J.-Y.: Interprétation foncionnelle et élimination des coupures de
Parithmétique d’order supérieur. PhD thesis, Université de Paris VII (1972)

Hall, C.V., Hammond, K., Peyton Jones, S.L., Wadler, P.L.: Type classes in
Haskell. ACM Transactions on Programming Languages and Systems 18(2), 109—
138 (1996)

Harper, R., Morrisett, G.: Compiling polymorphism using intensional type analysis.
In: 22nd Symposium on Principles of Programming Languages, POPL ’95, pp. 130—
141 (1995)

Hinze, R.: Functional Pearl: Perfect trees and bit-reversal permutations. Journal
of Functional Programming 10(3), 305-317 (2000)

Hinze, R.: Memo functions, polytypically! In: Jeuring, J. (ed.) Proceedings of the
2nd Workshop on Generic Programming, Ponte de Lima, Portugal. The proceedings
appeared as a technical report of Universiteit Utrecht, UU-CS-2000-19, pp. 17-32
(2000)

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Generic Programming, Now! 207

Hinze, R.: A new approach to generic functional programming. In: Reps, T.W.
(ed.) Proceedings of the 27th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL’00), Boston, Massachusetts, January
19-21, pp. 119-132 (2000)

Hinze, R.: Polytypic values possess polykinded types. Science of Computer Pro-
gramming 43, 129-159 (2002)

Hinze, R.: Fun with phantom types. In: Gibbons, J., de Moor, O. (eds.) The Fun of
Programming, pp. 245-262 Palgrave Macmillan (2003) ISBN 1-4039-0772-2 hard-
back, ISBN 0-333-99285-7 paperback

Hinze, R.: Generics for the masses. J. Functional Programming 16(4&5), 451-483
(2006)

Hinze, R., Jeuring, J.: Generic Haskell: Applications. In: Backhouse, R., Gibbons,
J. (eds.) Generic Programming. LNCS, vol. 2793, pp. 57-97. Springer, Heidelberg
(2003)

Hinze, R., Jeuring, J.: Generic Haskell: Practice and theory. In: Backhouse, R.,
Gibbons, J. (eds.) Generic Programming. LNCS, vol. 2793, pp. 1-56. Springer,
Heidelberg (2003)

Hinze, R., Jeuring, J., Loh, A.: Type-indexed data types. Science of Computer
Programming 51, 117-151 (2004)

Hinze, R., Loh, A.: Scrap Your Boilerplate revolutions. In: Uustalu, T. (ed.) MPC
2006. LNCS, vol. 4014, pp. 180-208. Springer, Heidelberg (2006)

Hinze, R., Loh, A., Oliveira, B.C.d.S.: Scrap Your Boilerplate reloaded. In: Hagiya,
M., Wadler, P. (eds.) FLOPS 2006. LNCS, vol. 3945, pp. 13-29. Springer, Heidel-
berg (2006)

Hinze, R., Loh, A., Oliveira, B.C.d.S.: Scrap Your Boilerplate reloaded. Technical
Report TAI-TR-2006-2, Institut fiir Informatik 111, Universitat Bonn. (2006)
Hinze, R., Peyton Jones, S.L.: Derivable type classes. In: Hutton, G. (ed.) Pro-
ceedings of the 2000 ACM SIGPLAN Haskell Workshop. Electronic Notes in The-
oretical Computer Science, vol. 41.1, Elsevier, Amsterdam (2001) The preliminary
proceedings appeared as a University of Nottingham technical report

Hutton, G.: Higher-order functions for parsing. Journal of Functional Program-
ming 2(3), 323-343 (1992)

Jansson, P., Jeuring, J.: PolyP-a polytypic programming language extension. In:
Conference Record 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’97), Paris, France, pp. 470-482. ACM Press, New
York (1997)

Jones, M.P.: A system of constructor classes: overloading and implicit higher-order
polymorphism. Journal of Functional Programming 5(1), 1-35 (1995)

Jones, M.P.: Type classes with functional dependencies. In: Smolka, G. (ed.) ESOP
2000 and ETAPS 2000. LNCS, vol. 1782, pp. 230—-244. Springer, Heidelberg (2000)
Lammel, R., Peyton Jones, S.L.: Scrap more boilerplate: reflection, zips, and gen-
eralised casts. In: Fisher, K. (ed.) Proceedings of the 2004 International Conference
on Functional Programming, Snowbird, Utah, September 19-22, 2004, pp. 244-255
(2004)

Lammel, R., Peyton Jones, S.L.: Scrap your boilerplate with class: extensible
generic functions. In: Pierce, B. (ed.) Proceedings of the 2005 International Confer-
ence on Functional Programming, Tallinn, Estonia, September 26-28, 2005 (2005)
Leijen, D., Meijer, E.: Domain-specific embedded compilers. In: Proceedings of the
2nd Conference on Domain-Specific Languages, Berkeley, CA, USENIX Associa-
tion, pp. 109-122 (1999)

208

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

R. Hinze and A. Loh

Loh, A., Hinze, R.: Open data types and open functions. In: Proceedings of the 8th
ACM SIGPLAN Symposium on Principles and Practice of Declarative Program-
ming, Venice, Italy, pp. 133-144. ACM Press, New York (2006)

Loh, A.: Exploring Generic Haskell. PhD thesis, Utrecht University (2004)

Loh, A., Jeuring, J.: The Generic Haskell user’s guide, version 1.42 - Coral release.
Technical Report UU-CS-2005-004, Universiteit Utrecht (January 2005)

Norell, U., Jansson, P.: Polytypic programming in Haskell. In: Trinder, P., Michael-
son, G.J., Peiia, R. (eds.) IFL 2003. LNCS, vol. 3145, pp. 168-184. Springer, Hei-
delberg (2004)

Oliveira, B.C.d.S., Gibbons, J.: TypeCase: A design pattern for type-indexed func-
tions. In: Leijen, D. (ed.) Proceedings of the 2005 ACM SIGPLAN workshop on
Haskell, Tallinn, Estonia, pp. 98-109 (2005)

Peyton Jones, S.L.: Haskell 98 Language and Libraries. Cambridge University
Press, Cambridge (2003)

Peyton Jones, S.L., Ldmmel, R.: Scrap your boilerplate: a practical approach to
generic programming. In: Proceedings of the ACM SIGPLAN Workshop on Types
in Language Design and Implementation (TLDI 2003), New Orleans, pp. 26-37
(2003)

The GHC Team. The Glorious Glasgow Haskell Compilation System User’s Guide,
Version 6.4.1 (2005), Available from http://www.haskell.org/ghc/

Trifonov, V., Saha, B., Shao, Z.: Fully reflexive intensional type analysis. In: Pro-
ceedings ICFP 2000: International Conference on Functional Programming, pp.
82-93. ACM Press, New York (2000)

Wadler, P.: The expression problem. Note to Java Genericity mailing list (Novem-
ber 12, 1998)

Wadler, P.: Theorems for free! In: The Fourth International Conference on Func-
tional Programming Languages and Computer Architecture (FPCA’89), London,
UK, pp. 347-359. Addison-Wesley, Reading (1989)

Weirich, S.: Encoding intensional type analysis. In: Sands, D. (ed.) ESOP 2001 and
ETAPS 2001. LNCS, vol. 2028, pp. 92-106. Springer, Heidelberg (2001)

Weirich, S.: Type-safe cast. Journal of Functional Programming 14(6), 681-695
(2004)

http://www.haskell.org/ghc/

Generic Programming with Dependent Types

Thorsten Altenkirch, Conor McBride, and Peter Morris

School of Computer Science and Information Technology
University of Nottingham

1 Introduction

In these lecture notes we give an overview of recent research on the relationship
and interaction between two novel ideas in (functional) programming:

Generic programming. Generic programming [I5/22] allows programmers to
explain how a single algorithm can be instantiated for a variety of datatypes,
by computation over each datatype’s structure.

Dependent types. Dependent types [29/38] are types containing data which
enable the programmer to express properties of data concisely, covering the
whole spectrum from conventional uses of types to types-as-specifications
and programs-as-proofs.

Our central thesis can be summarized by saying that dependent types provide
a convenient basis for generic programming by using universes. A universe is
basically a type U : x which contains names for types and a dependent type, or
family, Fl : U — % which assigns to every name a : U the type of its elements
El a : x—we call this the extension of the name a. Historically, universes have
been already used by Type Theory to capture the predicative hierarchy of types,
first introduced by Russell to prevent set-theoretic paradoxes:

kO okl ook Dok Dokl .

If we want to avoid chains of : we can represent this hierarchy as:

Ui Lok
Ell : Ui—>*
u @ Uipr

Here % plays the role of a superuniverse in which all universes can be embedded,
while U; is the type of (names of) types at level i. The operation EI; assigns
to any name of a type at level ¢ the type of its elements. In particular u; is the
name of the previous universe at level ¢ + 1 and hence Fl; 1, u; = Uj;.

The predicative hierarchy of universes is necessary to have types of types
without running into paradoxes (e.g. by having a type of all types). Here we
are interested in the application of universes to programming, which leads us
to consider a wider variety of smaller universes, less general but more usefully
structured than the ones above.

R. Backhouse et al. (Eds.): Datatype-Generic Programming 2006, LNCS 4719, pp. 209, 2007.
© Springer-Verlag Berlin Heidelberg 2007

210 T. Altenkirch, C. McBride, and P. Morris

Related Work

The idea to use dependent types for generic programming isn’t new: starting
with the pioneering work by Pfeifer and Ruefl [37] who used the LEGO system
as a vehicle for generic programming, the authors of [16] actually introduced
a universe containing codes for dependent types. The latter is based on the
work by Dybjer and Setzer on Induction-Recursion [20/21] which can also be
understood as universe constructions for non-dependent and dependent types.
The first two authors of the present notes presented a universe construction for
the first order fragment of Haskell datatypes including nested datatypes in [9]
which was motivated by the work on generic Haskell [T4126].

Structure of the Paper

We start our discourse with a quick introduction to dependently typed program-
ming (section) using the language Epigram as a vehicle. Epigram is described
in more detail elsewhere, see [33] for a definition of the language with many
applications, [I1] for a short and more recent overview and [32] for an introduc-
tory tutorial. Epigram is not just a language but also an interactive program
development system, which is, together with further documentation, available
from the Epigram homepage [31].

As a warm up we start with a very small, yet useful universe, the universe
of finite types (section [B]). The names for types in this universe are particularly
simple, they are just the natural numbers.

We soon move to bigger universes which include infinite types in section Ml
where we introduce a general technique how to represent universes which contain
fixpoints of types — this section is based on [36]. We also discuss the tradeoff
between the size of a universe and the number of generic operations it supports.

While the universes above are defined syntactically, we also present a semantic
approach based on Container Types (section [, see [TI2/3/4]. However, here we
will not study the categorical details of containers in detail but restrict ourselves
to using them to represent datatypes and generic operations in Epigram.

As an example of a library of generic operations we consider the generic zip-
per [25] (section []), which is a useful generic tool when implementing functional
programs which use the notion of a position in a data structure. As observed
by McBride [30], the zipper is closely related to the notion of the derivative
of a datatype, which has many structural similarities to derivatives in calculus.
This topic has been explored from a more categorical perspective in [5l[7]; the
presentation here is again based on [36].

Finally, we present our conclusions and possible directions for further work
(section [M). All the code contained with these notes is available to download
from the Epigram website [12].

2 Programming with Dependent Types in Epigram

Epigram is an experimental dependently typed functional language and an in-
teractive program development system. It is based on previous experiences with

Generic Programming with Dependent Types 211

systems based on Type Theory whose emphasis has been on the representa-
tions of proofs like LEGO [27]. The design of the interactive program and proof
development environment is heavily influenced by the ALF system [28§].

Epigram uses a two-dimensional syntax to represent the types of operators
in a natural deduction style. This is particularly useful for presenting programs
with dependent types—however, we start with some familiar constructions, e.g.
we define the Booleans and the Peano-style natural numbers as follows:

data (-—--———--- ! where (————————----—- 1 (mmmmmmmmm !
! Bool : *) ! true : Bool) ! false : Bool)
(n : Nat !
data (-———————- ! where (———————————- I !
! Nat : *) ! zero : Nat) ! suc n : Nat)

We first give the formation rules, Bool and Nat are types (x is the type of types)
without any assumptions. We then introduce the constructors: true and false are
Booleans; zero is a natural number and suc n is a natural number, if n is one.
These declarations correspond to the Haskell datatypes:

data Bool = True | False
data Nat = Zero | Succ Nat

The natural deduction notation may appear quite verbose for simple definitions,
but you don’t have to manage the layout for yourself—the editor does it for you.
On paper, we prefer WTEX to ASCII-art, and we take the liberty of typesetting
declarations without the bracket delimiters and semicolon separators.

n : Nat
data Nat : % where zero : Nat sucn : Nat

The formation rule may contain assumptions as well, declaring the arguments
to type constructors, e.g. in the case of lists:

data !---—=——---—- ! where (-—————--—-———- 1 !

(A : x* ! (a:A; as : List A !
! !
! List A : *) ! nil : List A) !

cons a as : List A)

In IATEX this becomes:

A * a: A as: ListA
data List A : % where nil : List A consaas : Lista

Here the type-valued arguments to the constructors are left implicit. However,
as we shall see, the use of implicit arguments becomes more subtle with depen-
dent types. Hence, Epigram offers an explicit notation to indicate where implicit
arguments should be expected. The definition above can be spelt out in full:

212 T. Altenkirch, C. McBride, and P. Morris

(A x (a:A; as : List A !
data !--———-———- ! where (—————————- by e !
! List A ! ! nil _A : ! ! cons _A a as !
o %) ! List A) ! : List A)

Here, the underscore overrides the implicit quantifier to allow the user to specify
its value explicitly. In ITEX we denote this by subscripting the argument itself,
as you can see in the typeset version of the above:

data i 7, where A A

Under normal circumstances, Epigram’s elaborator will be able to infer values for
these arguments from the way these constructors are used, following a standard
unification-based approach to type inference. Previously, we also omitted the
declaration of A : % in the premise: again, this can be inferred by the elaborator
as well, with the natural deduction rule acting like Hindley-Milner ‘let’, implicitly
generalising local free variables.

Defining Functions
We define functions using let and generate patterns interactively. The text of a
program records its construction. E.g. we define boolean not by case analysis
on its first argument:

b : Bool

not b - Bool not b <« case b

not true = false
not false = true

let

Let-declarations use the two-dimensional rule syntax to declare a program’s
type: in Epigram, all top-level identifiers must be typed explicitly, but this type
information is then propagated into their definitions, leaving them relatively free
of annotation. Epigram programs are not sequences of prioritised equations as
is traditional [34]. Rather, they are treelike: on the left-hand side, the machine
presents a ‘programming problem’; e.g., to compute not b; on the right-hand
side, we explain how to attack the problem in one of two ways:

< ‘by’ refinement into subproblems, using an eliminator like case b, above; the
machine then generates a bunch of subproblems for us to solve;

= ‘return’ an answer directly, giving an expression of the appropriate return
type, which may well be more specific than the type we started with, thanks
to the analysis of the problem into cases.

In ASCII source, this tree structure is made explicit using {...} markings: here,
we drop these in favour of indentation.

Generic Programming with Dependent Types 213

Epigram programs thus explain the strategy by which they compute values:
case analysis is one such strategy. By ensuring that the available strategies are to-
tal (e.g., case eliminators cover all constructors), we guarantee that all programs
terminatel] To implement a recursive program, we can invoke a rec eliminator,
capturing the strategy of structural recursion on the nominated argument: recur-
sive calls have to be structurally smaller in this argument. As simple examples,
consider addition and multiplication of Peano natural numbers:

let z,y : Nat

pluszy : Nat pluszy < recz

plusz y < casez
pluszeroy = y
plus (sucz) y = suc(plusz y)

let m,n : Nat

. times mn < recm
times m n : Nat

times m n < casem
times zeron = zero
times (sucm) n = plusn (times m n)

It should be noted that these programs produce terms in Epigram’s underlying
type theory which use only standard elimination constants to perform recursion
or case analysis. Programmng with rec is much more flexible than ‘primitive recur-
sion’: it is straightforward to implement programs with deeper structural recursion,
like the Fibonacci function, or lexicographically combined structural recursions,
like the Ackermann function.

Data-Type Families

So far we haven’t used dependent types explicitly. Dependent types come in
families [19], indexed by data. A standard example is the family of vectors
indexed by length:

n: Nat X : % a:A as:VecnX
data Vecn X where vnil : Veczero X vconsa as : Vec (sucn) X

Here Vecn X is the type of vectors, length n, of items of type X.
We can now implement a safe version of the head function, whose type makes
it clear that the function can only be applied to non-empty lists:

: Vec (sucm) Y

ys
let vhead ys : Y

vhead ys < case ys
vhead (vcons y ys) = y

Note that Epigram does not ask for a vnil case—vnil’s length, zero, does not unify
with suc m, the length of ys, so the case cannot ever arise.

! The condition that the use of universes has to be stratified is present in the lan-
guage definition but absent from the current implementation. As a consequence, the
machine will accept a bogus non-terminating term based on Girard’s paradox.

214 T. Altenkirch, C. McBride, and P. Morris

More generally, we can implement a function which safely accesses any element
of a vector. To do this we first define the family of finite types, with the intention
that Fin n represents the finite set {0, 1,...,n—1}, i.e. exactly the positions in a
vector of length n.

n : Nat i : Finn
data Finn : % where fz : Fin (sucn) fsi : Fin (sucn)

Here fz represents 0 which is present in any non-empty finite set, and fsi :
Fin (sucn) represents i+1, given that ¢ : Fin n. Note that Fin zero is meant to be
empty: case analysis on a hypothetical element of Fin zero leaves the empty set
of patterns. The following table enumerates the elements up to Fin 4:

Fin0Fin1Fin2 Fin3 Fin 4
on fZl fZQ fZ3
fSl fZ() f52 fZl fS3 f22

fSQ (fSl fZQ) fS3 (fSQ fZl)
fS3 (fSQ (fSl on)) '

As you can see, each non-empty column contains a copy of the previous column,
embedded by fs, together with a ‘new’ fz at the start.

We implement the function proj which safely accesses the ith element of a
vector by structural recursion over the vector. We analyse the index given as
an element of Finn and since both constructors of Finn produce elements in
Fin (sucm) the subsequent analysis of the vector needs only a vcons case.

t zs : Vecn X 1 : Finn

le projasi : X

proj rsi < recxs
projzsi < casei
proj xs fz < case xs
proj (veons z zs) fz = «
proj zs (fsi) < case xs
proj (vcons z zs) (fs i) = proj zs i

Let’s look more closely at what just happened. Here’s proj again, but with
the numeric indices shown as subscripts:

let ¥ :Vecn X i: Finn
pProj, zsi : X
Proj, xs i < recxs
Proj, xsi < case i

proj(suc n) IS (fzn) < casers
Proj(sucn) (veons, = xs) (fz,) = «

proj(suc n) IS (fsn Z) < casezrs
Proj(sucn) (veons, = xs) (fs,, i) = proj, xs i

Generic Programming with Dependent Types 215

When we analyse i, we get patterns for ¢, but we learn more about n at the same
time. Case analysis specialises the whole programming problem, propagating the
consequences of inspecting one value for others related to it by type dependency.
The extra requirements imposed on the construction of dependently typed data
become extra guarantees when we take it apart.

Ezercise 1. Implement the function transpose which turns an m X n matrix
represent as an m vector of n vectors into an n X m matrix represented as a n
vector of m vectors:

¢ zys : Vecn (Vecm X)
transpose zys : Vecm (Vecn X)

Predefined Types in Epigram

Epigram provides very few predefined types: the empty type Zero, the unit type
One and the equality type a = b : % for any a, b not necessarily of the same
type. The only constructor for equality is refl : @ = @ in the special case that
both sides of the equation compute to the same value. For example,

refl : plus (suc (suc zero)) (suc (suc zero)) = suc (suc (suc (suc zero)))

Epigram has dependent function types Va: A = B, where firstly A : * and
secondly B : % under the assumption a : A. We retain the conventional A — B
notation for function types where the latter assumption is not used. Lambda
abstraction is written Az : A = b. The domain information can be omitted in A
and V, if it can be inferred from the context. Several abstractions of the same
kind can be combined using ;, i.e. we write Az;y = ¢ for A\x = Ay = c. The rule
notation is just a convenient way to declare functions, e.g. the type of vhead
can be written explicitly as V m; Y =Vec (sucm) Y — Y.

Common Datatypes in This Paper
There are a few additional standard type constructors which we shall use in this
paper: we define a type for disjoint union corresponding to Either in Haskell:

A B : % a: A b: B
Plus AB : % “PeT® | PlusAB Inrb : PlusA B

Epigram hasn’t currently a predefined product type, hence we define it:

A B : % a:A b:B
TimesA B V€ poi b Times A B

data

data

We also introduce the X-type, giving us dependent tupling: B

A:%x B:A—x a:A b:Ba

data Sigma A B : % where Tupab : Sigma A B

2 Some authors call this a ‘dependent product’, as it’s the dependent version of Times.
Other call it a ‘dependent sum’, as it’s the infinitary analogue of Plus, and say
‘dependent product’ for functions, as these are the infinitary analogue of tuples. To
avoid confusion, we prefer to talk of ‘dependent function types’ and ‘dependent tuple

types’.

216 T. Altenkirch, C. McBride, and P. Morris

Ezercise 2. Define the first and second projection for X-types using pattern
matching:

Sigma A B
fstp: A

p : Sigma A B

P
let snd p : B (fst p)

let

W-Types

Later in the paper, we shall also need a general-purpose inductive datatype,
abstracting once and for all over well-founded tree-like data. Tree-like data is
built from nodes. Each node carries some sort of data—its shape—usually, a
tag indicating what sort of node it is, plus some appropriate labelling. In any
case, the node shape determines what positions there might be for subtrees.
This characterisation of well-founded data in terms of shapes and positions is
presented via the W-type:

S:%x P:S§S—x% s:S f:Ps—WSP
data = "Gy g p'., T where TG S W p

The constructor packs up a choice s of shape, together with a function f as-
signing subtrees to the positions appropriate to that shape. It is traditional to
call the constructor Sup for ‘supremum’; as a node is the least thing bigger than
its subtrees. We often illustrate this pattern—choice of shape, function from
positions—as a triangle diagram. We write the shape s in the apex, and we
think of the base as the corresponding set P s of positions. The function f, part
of the node hence inside the triangle, attaches subtrees w to positions p.

Sup

p—w

For example, the natural numbers have two node shapes, suc with one subtree
and zero without. Correspondingly, we can use Bool for the shapes; the positions
are given by the following type family which captures ‘being true’:

b : Bool

data Sob - x where

oh : So true

p : Sofalse

let notSop : X

notSop <« casep

Generic Programming with Dependent Types 217

We may now define the natural numbers as a W-type:

let wNat : *

wNat = W Bool So

Sup
let wZero : wNat @

wZero = Sup false notSo

Sup
n : wNat t o—n
let wSuc n : wNat <
wSucn = Suptrue (Ap =n)

The pictures show us the components we can plug together to make numbers.

‘Two’ looks like this: Sup Sup Sup

Lots of our favourite inductive datatypes fit this pattern. Another key example
is the type of finitely branching trees, W Nat Fin, where the shape of each node
is its arity.

Ezercise 3. Construct the W-type corresponding to Haskell’s

data BTree 1 n = Leaf 1 | Node (BTree 1 n) n (BTree 1 n)

Later, we shall exploit the W-type analysis of data in terms of shapes and
positions to characterise containers, more generally.

Views in Epigram
Once we have the idea of programming by stepwise refinement of problems, it
becomes interesting to ask ‘What refinements can we have? Are we restricted to
case and rec?’. The eliminators which we use to refine programming problems
are first-class Epigram values, so it is entirely possible to implement your own.
This flexibility is central to the design of Epigram [33], and it gives rise to a novel
and useful programming technique inspired by Wadler’s notion of ‘views’ [40].
We can specify a new way to analyse data, just by indexing a datatype family
with it. Consider pairs of Boolean values, for example: regardless of whether they
are true or false, it is surely the case that either they coincide, or the second is the
negation of the first. We can express this idea by defining a datatype family—the
view relation—with one constructor for each case of our desired analysis:

b, a : Bool where

data £ OrNot b a : same : EqOrNot b b diff : EqOrNot b (not b)

If we had an element p of EqOrNot b a, then case analysis for p as same or diff
tells us ipso facto whether a is b or not b. Let us make sure that we can always

218 T. Altenkirch, C. McBride, and P. Morris

have such a p by writing a covering function to show that the view relation
always holds.
let eqOrNot b a < caseb
eqOrNot true a < case a
eqOrNot true true = same
eqOrNot true false = diff
eqOrNot false ¢ < case a
eqOrNot false true = diff
eqOrNot false false = same

eqOrNot b a : EqOrNot b a

How do we use this information in practice? Epigram has syntactic support
for case analysis derived in this style: if p is a proof that the view relation holds,
view p is the eliminator which delivers the corresponding analysis of its indices.
For example, we may now write

z,y : Bool

xorzy : Bool XOT7TY < view (eqOrNot z y)

xor z z = false
xor z (not z) = true

There is no need to be alarmed at the appearance of repeated pattern variables
and even defined functions on the left-hand side. Operationally, this program
computes an element of EqOrNot z y, then forks control accordingly as it is
same or diff. What you see on the left comes from the specialisation of y which
accompanies that constructor analysis.

Views are important tools for testing data on which types depend. Our EqOrNot
construction may be more complex than the ordinary Boolean ‘equivalence’ test,
but it is also more revealing. The view actually shows the typechecker what the
equality test learns.

To see this in action, consider implementing an equality test for wNat. At each
node, we shall need to compare shapes, and if they coincide, check equality at
each position. How do we know that the position sets must be identical whenever
the shapes coincide? Our view makes the connection.

z,y : wNat

let wNatEq z y : Bool

wNatEqz y < recz
wNatEqz y < casezx
wNatEq (Sup b f) y < casey
wNatEq (Sup b f) (Sup a g) < view (eqOrNot b a)

wNatEq (Sup b f) (Sup b g) < casebd
wNatEq (Sup true f) (Sup true g) = wNatEq (f oh) (g oh)
wNatEq (Sup false f) (Sup false g) = true

wNatEq (Sup b f) (Sup (not b) g)) = false

Generic Programming with Dependent Types 219
3 The Universe of Finite Types

We have already implicitly introduced our first example of a universe: the uni-
verse of finite types. The names of finite types are the natural numbers which
tell us how many elements the type has and the extension of such a type name
is given by the family Fin given in the previous section, which assigns to any
n : Nat a type Finn with exactly n elements. We will now identify basic oper-
ations on types within this universe, namely coproducts (0, +), products (1, x)
and leave exponentials (—) as an exercise. This reflects the well known fact that
the category of finite types is bicartesian closed.

Coproducts
The coproduct of two finite types m,n : Nat is simply their arithmetical sum
plusmn : Nat, which we have defined previously. Coproducts come with in-
jections and an eliminator which gives us case analysis. We will use Epigram’s
views to implement a view on coproducts in the finite universe. As a consequence
we can use Epigram’s pattern matching to analyse elements of Fin (plus m n) as
if they were elements of an ordinary top-level coproduct (Plus).

We are going to parametrize the injections finl and finr explicitly with the
type parameters m,n : Nat leading to the following signatures:

let m7n:‘Nat'i:Finm le m,n:_Nat'j:Finn
finlmn ¢ : Fin (plus m n) finr m nj : Fin (plus m n)
finl will map the elements of Fin m to the first m elements of Fin (plus m n) and
finr will map the elements of Fin n to the subsequent n elements of Fin (plus m n).
These ideas can be turned into structural recursive programs over m: in the case
of finl
finlmni < recm
finlmni < cases
finl (sucm) nfz = fz
finl (sucm) n (fsi) = fs (finl m n i)

we analyse the element 7 : Fin m mapping the constructors fs, fz in Fin m to their
counterparts in Fin (plus m n). To implement finr we follow a different strategy:

fintrmnj < recm

finrmnj < casem
finrzeronj = j

finr (sucm) nj = fs(finr mn j)

We analyse the type name m : Nat to apply m successor operations fs to lift
Fin n into Fin (plus m n). It is worthwhile to note that the above implementations
of finl and finr only work for the given implementation of plus which recurs
over the first argument. Had we chosen a different one, we would have to either
have chosen a different implementation of finl and finr or would have to employ

220 T. Altenkirch, C. McBride, and P. Morris

equational reasoning to justify our implementation. We tend to avoid the latter
as much as possible by carefully choosing the way we implement our functions.

How can we compute with elements of Fin (plusmn)? One way to answer
this question is to provide an eliminator in form of a case-function:

s : Fin(plusmn) [:Finm—X r:Finn—>X

let fcase,,,slr : X

However, Epigram offers a general mechanism which allows the user to extend the
predefined pattern matching mechanism by providing a view, i.e. an alternative
covering of a given type which is represented as a family:

i : Fin (plus m n)

.) where
FinPlus m n i

data
i : Finm J + Finn
isfinl ¢ : FinPlusm n (finl m n4) isfinrj : FinPlus m n (finr m n j)

To use the FinPlus view for pattern matching we have to implement a function
which witnesses that the covering is exhaustive:

let finPlusmni : FinPlusm n i

finPlus mni < recm
finPlus mn i < casem
finPlus zero n ¢ = isfinr ¢
finPlus (sucm) ni < casei
finPlus (sucm) n fz = isfinl fz
finPlus (sucm) n (fsi) < view finPlus m n i
finPlus (sucm) n (fs (finl m n 4)) = isfinl (fs)
finPlus (sucm) n (fs (finr m n j)) = isfinrj

We can now use view to do pattern matching over Fin (plusmn), e.g. to imple-
ment fcase:
fcase,,, slr < view finPlusmn s
fcase,,, (inlmn i) lr = 114
fcase,,, (fintr mnyj)lr = rj

Products

Given type names m,n : Nat their cartesian product is denoted by the arith-
metic product times m n. Elements of Fin (times m n) can be constructed using
pairing:

i :Finm j:Finn

let fpair m nij : Fin (times m n)

The intuitive idea is to arrange the elements of Fin (times m n) as a rectangle and
assign to pair ¢ j the jth column in the ith row. This is realised by the following

Generic Programming with Dependent Types 221

primitive recursive function which uses the previously defined constructors for
coproducts, since our products are merely iterated coproducts:

fpairmnij < reci
fpairmnij < casei
fpair (sucm) nfzj = finln (timesmn) j
fpair (sucm) n (fsi) j = finr n (times m n) (fpair m n i j)

Indeed the pairmnij just computes j + ¢ * n, however our implementation
verifies that the result is less than m * n simply by type checking.

As in the case for coproducts we extend pattern matching to cover our prod-
ucts by providing the appropriate view:

i : Fin (times m n)

data FinTimesmmni : x

i:Finm j:Finn

where isfpair i j : FinTimes m n (fpair m n i j)

As before we show that this view is exhaustive:

let finTimes mni : FinTimesm n ¢

finTimes mni < recm
finTimes m ni < casem
finTimes zeron i < casei
finTimes (sucm) n i < view finPlus n (times m n) i
finTimes (sucm) n (finl n (times m n) i) = isfpair fz
finTimes (sucm) n (finr n (times m n) j) < view finTimes m n j
finTimes (sucm) n (finr n (times m n) (fpair m nij))
= isfpair (fsi) j

Note that we are using the previously defined FinPlus view to analyse the
iterated coproducts. We can use both derived pattern matching principles to
show that products distribute over coproducts

z : Fin (times m (plus n o))

let dist m n o z : Fin (plus (times m n) (times m o))

dist m n o z < view finTimes m (plus n o) =
dist m n o (fpair m (plus n 0) i j) < view finPlusn o j
dist m n o (fpair m (plus n o) i (finln 0 j))
= finl (times m n) (times m o) (fpair m n i j)
dist m n o (fpair m (plus n o) ¢ (finr n 0 j))
= finr (times m n) (times m o) (fpair m o i j)

The categorically inclined may notice that this is not an automatic consequence
of having products and coproducts, but usually established as a consequence of
having exponentials. We leave it as an exercise to define exponentials.

222 T. Altenkirch, C. McBride, and P. Morris

Ezercise 4. Define exponentials (i.e. function types) by implementing a function
to represent the name of a function type:

m,n : Nat

let expmn : Nat

and a constructor corresponding to lambda abstraction:

let f :Finm — Finn
flam m n f : Fin (exp m n)
Unlike in the previous cases we cannot implement a pattern matching principle
due to the lack of extensionality in Epigram’s type system
However, we can define an application operator:

f : Fin(expmmn) i: Finm

let fappmnfi: Finn

4 Universes for Generic Programming

The previously introduced universe of finite types is extensional, any two func-
tions which are extensionally equal are given the same code. E.g. using the
example from [I3] we can see that the functions Af : Bool — Bool = f and
Af :Bool — Bool; z:Bool = f (f (f z)) are extensionally equal by encoding them
using the combinators defined in the previous section and observing that they
compute the same element in Fin 256

While extensionality is a desirable feature, it is not always as easy to achieve
as in the case of finite types. Hence, when moving to larger universes which allow
us to represent infinite datatypes we shall use a different approach. Instead of
identifying our type constructors within a given type of names, we inductively
define the type of type names and the family of inhabitants.

Finite Types, Revisited
To illustrate this let us revisit the universe of finite types, we can inductively
define the type names generated from 0,4+, 1, x:

a,b : Ufin
data e WHETC (o Ugin ‘plus’a b ¢ Ufin
a,b : Ufin

‘1’ : Ufin ‘times’ a b : Ufin

3 We cannot show that two functions are equal if they are pointwise equal. As a
consequence we cannot show for example that there are exactly 4 functions of type
Bool — Bool which would be necessary if we want to establish a case analysis
principle for finite types. Our ongoing work on Observational Type Theory [10] will
address this issue.

4 We don’t recommend trying this with the current implementation of Epigram.

Generic Programming with Dependent Types 223

We could also have included function types, however, they will require special
attention later when we introduce inductive types.
We define the family of elements Elfin inductively:

a : Ufin
data plet o s

where b,a : Ufin z : Elfina a,b : Ufin y : Elfind

inl z : Elfin (‘plus’ a b) inry : Elfin (‘plus’ a b)
x : Elfina y : Elfind

void : Elfin ‘1’ pairz y : Elfin (‘times’ a b)

Indeed, we have seen inductively defined families already when we introduced
Vec and Fin. We can reimplement the dist function for this universes without
having to resort to views, the built in pattern matching will do the job:

lot z : Elfin (‘times’ a (‘plus’ b ¢))
dist z : Elfin (‘plus’ (‘times’ a b) (‘times’ a ¢))
dist x < casex
dist (pairz y) < casey
dist (pair z (inl y)) = inl (pairz y)
dist (pair z (inr z)) = inr (pair z z)

4.1 Enumerating Finite Types

So far we haven’t defined any proper generic operations, i.e. an operation which
works on all types of a universe by inspecting the name. A generic operation
which is typical for finite types is the possibility to enumerate all elements of a
given type. We shall use binary trees instead of lists to represent the results of
an enumeration so that the path in the tree correspond to the choices we have to
make to identify the element. Since our types may be empty we require a special
constructor to represent an empty tree:

*

A
data pr 07,

a: A I,br : ETA

where \, CUET 4 Clr L ETA EETA

Our generic enumeration function has the following type:

a : Ufin
let enum a : ET (Elfin a)

224 T. Altenkirch, C. McBride, and P. Morris

To implement enum it is helpful to observe that ET is a monad, with

A

return]CEL]'I:‘ a:ETA returnET ¢ = Va

let

t:ETA f: A—ETB

let " indET ¢/ : ET B

bindET ¢t f < rect
bindET t f < caset
bindET (Va)f = fa
bindET (Cl7)f = C(bindET ! f) (bindET r f)
bindETEf = E

Consequently, ET is also functorial:

tf:A—>B t:ETA

let @ apET f ¢ : ET B

mapET f { = bindET ¢t (Az =returnET (f z))

We are now ready to implement enum by structural recursion over the type
name:

enum a < reca
enum ¢ < case a
enum ‘0" = E
enum (‘plus’ @ b) = C(mapET inl (enum a)) (mapET inr (enum b))
enum ‘1’ = V void
enum (‘times’ a b)
= bindET (enum a) (Az = mapET (\y = pair z y) (enum b))

Exercise 5. Add function types to Ufin and extend Elfin. The naive definition of
Elfin using functions would destroy positivity, but this problem can be overcome
by using Vec instead.

Can you extend enum to cover function types?

Context-Free Types

By context-free typesﬁ we mean types which can be constructed by combining
the polynomial operators from the previous section (0, +, x, 1) with an operator
1 to construct inductive types, or in categorical terms initial algebras. We have
already seen some examples of context-free types, for instance Nat can be ex-
pressed as Nat = pX.14 X and List which can be encoded: List A = uX. 1+ Ax X.
Other examples we will use include binary trees with data at the nodes which
can be given by the expression Tree A = uX.1+ (X x A x X). Finally, rose trees

5 We previously used the term ‘regular tree types’ [36] in a vain attempt to avoid
confusion with regular expressions.

Generic Programming with Dependent Types 225

which are given by the code RTA = pX.List(Ax X) = pX.puY. 14+ (Ax X) x vH
We use the term context-free types because the types have the same structure as
context-free grammars, identifying parameters with terminal symbols, recursive
variables with non-terminal symbols, choice with + and sequence with x.

The first technical issue we need to address is how to represent variables.
We use a deBruijn style representation of variables, this seems to be essential
since we are going to represent types as an inductive family, using names would
cause a considerable overhead and also would mean that we have to deal with
issues like alpha conversion. Moreover, we are free to implement a function which
translates a name carrying type into our internal deBruijn representation. This
choice is a variation on the approach taken by McBride [30] when he first gave
an inductive characterisation of these types. The names of context-free types
becomes a family indexed by the number of free variables:

data Uri:f: nN?t* where

As constructors we retain the polynomial operators which leave the number of
free variables unchanged:

a,b : Ucfn
‘0 : Ucfn ‘plus"ab : Ucfn

a,b : Ucfn
‘1’ : Uefn ‘times’a b : Ucf n

To represent variables we introduce two constructors: vl which represents the
last variable in a non-empty context, and wk a¢ which means that the type name
a is weakened, i.e. the last variable is not used and vl now refers to the variable
before the last:

a : Ucfn
vl : Ucf (sucn) wka : Ucf (sucn)

An alternative is to use the previously defined family of finite types directly, i.e.
only to introduce one constructor:

z : Finn
varz : Ucfn

but it is slightly more convenient to use wk and vl because otherwise we have to
define operations on Fin and Ucf instead of just for Ucf.

Dual to weakening is an operator representing local definitions, which allows
us to replace the last variable by a given type name:

f : Ucf(sucn) a : Ucfn
def fa : Ucfn

5 Qur definition of RT is isomorphic to leaf-labelled binary trees, while the trees in
7], p.16, uX.A x (List X) are isomorphic to node-labelled binary trees.

226 T. Altenkirch, C. McBride, and P. Morris

Alternatively, we could have defined substitution by recursion over the structure
of type names. In the presence of a binding operator, here p, this is not com-
pletely trivial. Later, we will see that another advantage of local definitions is
that it allows us to define operations by structural recursion whose termination
would have to be justified otherwise.

Finally, we introduce the constructor for inductive types, which binds the last
variable and hence decreases the number of free variables by one:

f : Ucf (sucn)
‘mu’ f : Ucfn

Our examples (natural numbers, lists, trees and rose trees) can be translated
into type names in Ucf:

let nat : Ucfp DAt = ‘mu (‘plus’ ‘1’ vl)

let list = ‘mu’ (‘plus’ 1’ (‘times’ (wk vl) vl))

list : Ucf (sucn)

let tree : Ucf (sucn)

tree = ‘mu’ (‘plus’ ‘1’ (‘times’ vl (‘times’ (wk vl) vl)))

let rt = ‘mu’ (def list (‘times’ (wk vl) vl))

rt : Ucf (sucn)
While nat and rt are closed types and hence inhabit Ucf n for any n : Nat,
list is parametrized by the last type variable and hence inhabits Ucf (sucn). We
exploit this in the definition of rose trees where we construct rose trees as the
initial algebra of list. Alternatively we can instantiate list to any type name
using let, e.g. letlist nat : Ucf n represents the type of lists of natural numbers.

4.2 Elements of Context-Free Types

How are we going to define the family of elements for Ucf? We have to take
care of the free type variables. A first attempt would be to say that we have to
interpret any type variable by a type, leading to the following signatureﬂ :

a:Ucfn Xs: Vecnx
Elef a Xs : %

This approach works fine for the polynomial operators, which are interpreted as
before, and the variables which correspond to projections; however, we run in
difficulties for u. Let’s see why: A reasonable attempt is to say:

x : Elcf f (veons (Elcf (‘mu’ f) Xs) Xs)
inz : Elcf (‘mu’ f) Xs

7 We are exploiting here % : %, however, this use can be stratified, i.e. if Xs : %; then
Elcf a Xs : *i41-

Generic Programming with Dependent Types 227

However, this definition is not accepted by Epigram’s schema checker, since it
is not able to verify that the nested occurrence of Elcf is only used in a strictly
positive fashion. This check is necessary to keep Epigram’s type system sound
by avoiding potentially non-terminating programs.

However, if we restrict ourselves to interpreting only closed types, we can over-
come this problem. We define the Elcf wrt to a closing substitution or telescope,
which interprets any free type variable by a type name with fewer free variables.
Hence we define the family of telescopes:

data - Nat a:Ucfn as: Teln

where _ .
Teln : * tnil : Telzero tcons a as : Tel (sucn)

We can now define an interpretation for an open type together with a fitting
telescope:
data @ @ Ucfn as:Teln
Elcf a as :
the constructors for the polynomial operators stay the same, only indexed with
a telescope which is passed through:

b,a : Ucf =z : Elcfaas a,b: Ucf y : Elcfbas
inl z : Elcf (‘plus’ @ b) as inry : Elcf (‘plus’ a b) as

x : Elcfa y : Elcfbas
void : Elcf ‘1" as pairz y : Elcf (‘times’ a b) as

The interpretation of the last variable is simply the interpretation of the first
type name in the telescope:

x : Elcf a as
top z : Elcf vl (tcons a as)

Meanwhile, the interpretation of a weakened type is given by popping off the
first item of the telescope:

z : Elcf a as
pop z : Elcf (wk a) (tcons b as)

A local definition is explained by pushing the right hand side of the definition
onto the telescope stack:

x : Elcf f (tcons a as)
push z : Elcf (def f a) as

We can finally reap the fruits of our syntactic approach by providing an in-
terpretation of mu which doesn’t require a nested use of Elcf:

x : Elcf f (tcons as (‘mu’ f))
inz : Elcf (‘mu’ f) as

228 T. Altenkirch, C. McBride, and P. Morris

We can now derive constructors for our encoded types and provide a derived
case analysis using views. We show this in the case of nat and leave the other
examples as an exercise.

We derive the constructors representing 0 and successor:

let ‘zero’ = in (inl void)

‘zero’ : Elcf nat as

n : Elcf nat as

let ‘suc’ n : Elcf nat as

‘suc’n = in (inr (top n))
Our view is that all elements of Elcf nat are constructed by one of the construc-
tors, this is expressed by the family NatView:

n : Elcf nat as
data NatView n : %

n : Elcf nat as

where isZ : NatView ‘zero’ isSn : NatView (‘suc’ n)

We show that NatView is exhaustive:

let n : Elcf nat as
natView n : NatView n

natView n < casen
natView (inz) < casezx
natView (in (inl z)) < casex
natView (in (inl void)) = isZ
natView (in (inry)) < casey
natView (in (inr (top n’))) = isSn’

We can now use the derived pattern matching principle to implement functions
over the encoded natural numbers:

m,n : Elcf nat as

let ‘add’ m n : Elcf nat as

‘add’m n < recm
‘add’ m n < view natView m
‘add’ (in (inlvoid)) n = n
‘add’ (in (inr (top m’))) n = in (inr (top (‘add’ m' n)))

Unfortunately, Epigram always normalizes terms which appear in patterns, ex-
panding ‘zero’ and ‘suc’, which makes the pattern not very readable.

Note that we don’t need to derive a new recursion principle since structural
recursion over the encoded natural numbers is the same as structural recursion
over the natural numbers.

A natural question is whether we should have to distinguish between encoded
natural numbers and natural numbers at all. The answer is clearly no, since they

Generic Programming with Dependent Types 229

are isomorphic anyway. To exploit this fact and avoid unnecessary duplication
of definitions we need to build in a reflection mechanism into Epigram which
allows us to access the names of the top level universe as data.

Ezercise 6. Define a pattern matching principle for lists, that is first define ‘con-
structors’

let i1 . Elef list X

x : Elcf a as ws : Elcf list (tcons a as)

let ‘cons’ z xs : Elcf list (tcons a as)

and then create an appropriate view, following the nat example. Consider how
to do this for rose trees.

The typical generic operation on context-free types is generic equality. We can
implement generic equality (>) by structural recursion over the elements in Elcf.
The algorithm is completely data-driven — indeed we never inspect the type.
However, using the type information, the choice of the first argument limits the
possible cases for the 2nd. This is what dependently typed pattern matching
buys us, that it records the consequences of choices we have already made.

x,y : Elcf a as

let geqz y : Bool

geqry < recu
geqry < casex
geq (inlza) y < casey
geq (inl za) (inl ya) = geq za ya
geq (inl za) (inr yb) = false
geq (inrzb) y < casey
geq (inr zb) (inl ya) = false
geq (inr a) (inr yb) = geq zb yb
geqvoid y < casey
geq void void = true
geq (pair za zb) y < casey
geq (pair za xb) (pair ya yb) = and (geq za ya) (geq zb yb)
geq (topz) y < casey
geq (top z) (top y) = geqz y
geq (pop z) y <« casey
geq (pop z) (pop y) = geqz y
geq (pushz) y < casey
geq (push z) (push y) = geqz y
geq(inz)y < casey
geq(inz) (iny) = gequzy

230 T. Altenkirch, C. McBride, and P. Morris

Note that we don’t have to assume that the equality of type parameters is
decidable. This is due to the fact that we only derive generic operations for
closed types here.

Exercise 7. Instead of just returning a boolean we can actually show that we
can decide equality of elements of Elcf. We say that a type is decided, if it can
be established whether it is empty or inhabited. This is reflected by the following
definition:

let N(ﬁA* N Not A = A — Zero

a: A f : NotA

where yes a . Dec A nof : Dec A

A%
data Dec A : x

Here Zero is Epigram’s built in empty type, establishing a function of type Not A,
i.e. A — Zero establishes that A is uninhabited.
To show that equality for context-free types is decidable we have to implement:

let x,y : Elcf a as

geqdecz y : Dec(z =vy)

geqdec is a non-trivial refinement of geq using Epigram’s type system to show
that the implementation of the program delivers what its name promises.

4.3 Strictly Positive Types

Context-free types capture most of the types which are useful in daily functional
programming. However, in some situations we want to use trees which are in-
finitely branching. E.g. we may want to define a system of ordinal notations,
which extends natural numbers by the possibility to form the limit, i.e. the least
upper bound, of an infinite sequence of ordinals.

a : Ord f : Nat — Ord
data Ord : % where oz : Ord osa : Ord olimf : Ord

We can embed the natural numbers into the ordinals:

let n : Nat

n2on < recn
o2nn : x

n2on < casen
n2o zero = oz
n2o (sucn) = os(n2on)

and using this embedding we define the first infinite ordinal (w) as the limit of
the sequence of all natural numbers:

let omega = olimn2o

omega : Ord

Generic Programming with Dependent Types 231

We can also do arithmetic on ordinals, using structural recursion we define ad-
ditior] of ordinals:

a,b : Ord

let oplusa b : Ord

oplusab < recd
oplus a b < casebd
oplusaoz = a
oplus a (os b) = os (oplus a b)
oplus a (olim f) = olim (An = oplusa (f n))

Categorically, Ord is an initial algebra pX.1+ X + Nat — X, it is an instance
of a strictly positive type. Strictly positive types may use function types, like
in Nat — X but we do not allow type variables to appear on the left-hand
side of the arrow. L.e. uX.X — Bool is not strictly positive because X appears
negatively, but neither is uX.(X — Bool) — Bool because X appears positively
but not strictly positive.

We introduce the universe of strictly positive types by amending the universe
of context-free types. That is we define

data n : Nat
Uspn : *

a:Uspn as: Teln

data Elspaas :

with all the same constructors as Ucf and Elcf and additionally a constructor
for constant exponentiation:

A:% b:Uspn
‘arr’ Ab : Uspn

and a corresponding constructor for Elsp:

f: A—Elspbas
fun f : Elsp (‘arr’ A b) as

It is now easy to represent ordinals in this universe:

let ord : Uspn ord = ‘mu’ (‘plus’ ‘1’ (‘plus’ vl (‘arr’ Nat vl)))

We have been cheating a bit, because the constructor ‘arr’ refers to a type.
Thus Uspn : *;41 if A : x; in ‘arr” A b. An alternative would be to insist that

8 To reflect the standard definition of ordinal addition we have to recur on the 2nd
argument. Ordinal addition is not commutative, w + 1 denotes the successor of w,
while 1 4+ w is order-isomorphic to w.

232 T. Altenkirch, C. McBride, and P. Morris

the codomain of ‘arr’ is a closed strictly positive type, but this causes problems
when introducing fun because of a negative occurrence of Elsp.

Ezercise 8. Derive the constructors for ord : Usp n and a view which allows
pattern matching over ord. Use this to define ordinal addition for the encoded
ordinals.

4.4 Generic Map

We don’t know many useful generic operations which apply to closed strictly
positive types, but there is an important one for open ones: generic map. While
we have given only an interpretation for closed types we are able to express
generic map by introducing maps between telescopes.

We introduce a family representing maps between telescopes, which corre-
spond to a sequence of maps between the components of the telescopes:

data 95 bs : Teln
Map as bs : *

and generic map simply lifts maps on telescope to a function between the element
of a type instantiated with the telescopes:

fs : Mapasbs z : Elspa as

let gmap fs z : Elsp a bs

What are the constructors for Map? There are two obvious ones, which corre-
spond to the idea that Map as bs is simply a sequence of maps between the
components of as and bs:

f : Elspaas — Elspbbs fs : Map as bs
mnil : Map tnil tnil mcons f fs : Map (tcons a as) (tcons b bs)

However, it is useful to introduce a 3rd constructor, which extends a given se-
quence of maps by the identity function:

fs : Map as bs
mext fs : Map (tcons a as) (tcons a bs)

Note that mext fs isn’t just mcons (A x =) fs because instead of the identity
we need a function of the type Elsp a as — Elsp a bs. It would be possible to
define mext mutually with gmap but it is much easier to introduce an additional
constructor which also keeps the program structural recursive.

Generic Programming with Dependent Types 233

The definition of gmap is now rather straightforward by structural recursion
on the argument:

gmap fsz < recz
gmap fs z < case x
gmap fs (inl) = inl (gmap fs z)
gmap fs (inr y) = inr (gmap fs y)
gmap fs void = void
gmap fs (pair) = pair (gmap fs) (gmap fs y)
gmap fs (fun f) = fun (Az = gmap fs (f z))
gmap fs (top z) < case fs
gmap (mcons f fs) (topz) = top (f z)
gmap (mext fs) (top z) = top (gmap fs)
gmap fs (pop) < case fs
gmap (mcons f fs) (pop z) = pop (gmap fs z)
gmap (mext fs) (pop x) = pop (gmap f5)
gmap fs (push) = push (gmap (mext fs) z)
gmap fs (in z) = in (gmap (mext fs) z)

The cases for the proper data constructors (inl, inr, void, pair, fun and in) are stan-
dard and just push gmap under the constructor. The other cases deal with the
environment: top and pop have to analyse whether the environment has been
constructed using mcons or mext while in the line for push we can reap the fruits
by using mext instead having to use a non-structural recursive call to gmap.

As before in the case of geq the program is data-driven, i.e. we never have to
inspect the type. However, the type-discipline helps us to find the right definition,
which in many cases is the only possible one.

Exercise 9. Instantiate, gmap for list:

let list = ‘mu’ (‘plus’ ‘1’ (‘times’ (wk vl) vl))

list : Usp (suc n)
to obtain

ot J : Elspaas — Elspbas s : Elsplist (tcons a as)
map f zs : Elsplist (tcons b as)

4.5 Relating Universes

In the previous section we have incrementally defined three universes, each one
extending the previous one together with a typical generic operation:

universe of inhabited by generic operation
Ufin finite types Booleans (bool) Enumeration (enum)
Ucf context-free types Rose trees (rt) Equality (geq)
Usp strictly positive types Ordinals (ord) Map (gmap)

234 T. Altenkirch, C. McBride, and P. Morris

We could have factored out the common parts of the definitions and estab-
lished that every universe can be embedded into the next one but for pedagogical
reasons we chose the incremental style of presentation. We note that the generic
operations are typical for a given universe because they do not extend to the
next level, i.e. enumeration doesn’t work for context-free types because they con-
tain types with an infinite number of elements; equality doesn’t work for strictly
positive types because equality here is in general undecidable (e.g. for ordinals).

Are there any important universes we have left out? Between Ufin and Ucf
we can find the universe of regular types, i.e. types which are represented as
regular expressions, where the datatype of lists plays the role of Kleene’s star.
Another possibility is to also allow coinductive context-free types like streams
by including codes for terminal coalgebras, e.g. Stream X = v X. A x X. However,
this doesn’t fit very well with our way to define El inductively.

What about the universe of positive types extending the strictly positive
types? It is unclear how to understand a type like uX.(X — Bool) — Booll
intuitively and there seem to be only very limited applications of positive induc-
tive types. However, for gmap it is sensible to allow parameters in non-strict
positive positions without closing under pu.

4.6 Universes and Representation Types

There is a very strong connection between the notion of universe in Type The-
ory and the more recent notion of representation type which has emerged from
work on type analysis [I§] to become a popular basis for generic programming
in Haskell [24123][4T]. The two notions are both standard ways to give a data
representation to a collection of things, in this case, types:

— Martin-Lof’s universes (U, El) collect types as the image of a function El :
U — . Elements of U may thus be treated as proxies for the types to which
they map.

— Representation types characterise a collection of types as a predicate, Rep :
* — x. An element of Rep T' is a proof that T is in the collection, and it is
also a piece of data from which one may compute.

The former approach is not possible in Haskell, because U — % is not express-
ible when U is a type rather than a ‘kind’. However, the latter has become possi-
ble, thanks to the recent extension of (ghc) Haskell with a type-indexed variant
of inductive families [I9], the so-called ‘Generalized Algebraic Data Types’ [39)].
For example, one might define a universe of regular expression types as follows

data Rep a where

Char :: Rep Char
Unit :: Rep O
Pair :: Rep a -> Rep b -> Rep (a,b)

9 Note that (X — Bool) — Bool is covariant, unlike X — Bool x Bool which is
contravariant.

Generic Programming with Dependent Types 235

Either :: Rep a -> Reb b -> Rep (Either a b)
List :: Rep a -> Rep [a]

and then write a function generic with respect to this universe by pattern-
matching on Rep, always making sure to keep the type representative to the
left of the data which indirectly depends on it:

string :: Rep a -> a -> String

string Char c = [c]

string Unit O = "

string (Pair a b) (x, y) = string a x ++ string b y
string (Either a b) (Left x) = string a x

string (Either a b) (Right y) = string b y

string (List a) Xs = xs >>= string a

Of course, in Epigram, these two kinds of collection are readily interchange-
able. Given U and FEl, we may readily construct the predicate for ‘being in the
image of Kl

Rep X = Sigma U (Au = FElu = X)

In the other direction, given some Rep, we may ‘name’ a type as the depen-
dent pair of the type itself and its representation: we interpret such a pair by
projecting out the typel!

U = Sigma x (AX = Rep X)
El = fst

One can simulate this to some extent in Haskell by means of ezistential types
data U = forall a. U (Rep a)

and thus provide a means to compute one type from another—some sort of
auxiliary data structure, perhaps—by writing a function aux :: U -> U. For
example, aux might compute the notion of ‘one-hole context’ appropriate to its
argument, in an attempt to support generic structure editing. Unfortunately, U
is not a Sigma type but a System F ‘weak’ existential: direct access to the type
it packages is not possible. There is no way to express operations whose types
explicitly invoke these functions, e.g., plugging a value into a one-hole context
to recover an element of the original type.

System F’s capacity for secrecy is rather useful in other circumstances, but
it is a problem here. The nearest we can get to El is a rank-2 accessor which
grants temporary access to the witness to facilitate a computation whose type
does not depend on it.

for :: U -> (forall a. Rep a => b) > b

This problem is not the fault of representation types as opposed to universes
(although the latter are a little neater for such tasks): it’s just a shortfall in the
expressivity of Haskell.

236 T. Altenkirch, C. McBride, and P. Morris
5 Containers

In section Bl we started with a semantic definition of the universe of finite types,
while in the previous section we introduced universes syntactically, i.e. using
inductive definitions. In the present section we will exploit our work on container
types to give a semantic interpretation of the universe of context-free types
which also works for strictly positive types. It is good to have both views of the
universes available, we have seen that the inductive approach is very practical
to define generic and non-generic operations on data. However, the semantic
approach we introduce here often provides an alternative approach to defining
generic functions semantically. We will demonstrate this in more detail in the
next section using the example of derivatives of datatypes. Another advantage
of the semantic view is that it allows us to interpret open datatypes directly as
operations on types, e.g. we can apply list to types which don’t have a name in
our universe.

5.1 TUnary Containers

Before embarking on the more general concept of m-ary containers, which as
we will see can model exactly the universe of strictly positive types, we have a
look at unary containers, which model type constructors with one parameter, i.e.
inhabitants of x — %, where the parameter represents a type of payload elements
to be stored within some structure. A unary container is given by a type of
shapes S : x and a family of positions P : S — x. L.e. we define:

—

data UCont : %

S:x P:S—«%
ucont S P : UCont ucont S P

P s
where

We illustrate containers with triangle diagrams, intended to resemble a node in
a tree with its root at the left. As with W-types, we indicate a choice of shape in
the apex, and the base then represents a set of points, dependent on the shape;
the arrow at the top of the base indicates that the points in this set are positions
for payload.

The extension of a container is the parametric datatype which it describes:
its values consist of a choice of shape and an assignment of payload to positions,
represented functionally.

C : UCont X : & uext
data UExt C X : %
p—=T
s:S f:Ps—X
where

uext s f : UExt (ucont S P) X

We can also illustrate inhabitants of such a type by a diagram, labelling the base
with the function f which takes each position p to some payload value z.

Generic Programming with Dependent Types 237

An example of a unary container is this representation of List:

let cList : UCont cList = ucont Nat Fin

The shape of a list is its length, i.e. a natural number, and a list with shape
n : Nat has Fin n positions. We can re-implement the constructors for lists to
target the container representation

let nZoI:FfrllniZ?rg(noFini < case i

: uext
é
let cnil : UExt cList X cnil = uext zero noFin

ot £ X f :Finn— X ¢ : Fin(sucn)
caseFinz fi : X

uext sz
caseFinz f i < case1
caseFinz ffz = z sucn) ,
caseFinz f (fsi) = f i fsim fi

let & ° X ws : UExtcList X
ccons z zs : UExt cList X
ccons T s < case Is
ccons z (uext n f) = uext (sucn) (caseFin z f)

Exercise 10. We can also give a container representation for binary trees, here

shapes are given by trees containing data, positions by paths through such a
tree:

data where I,7 : cTreeS
cTreeS : % sleaf : cTreeS snodelr : cTreeS
s : cTreeS
data cTreeP s : Type where phere : cTreeP (nodel r)
q : cTreeP [p : cTreeP r

pleft ¢ : cTreeP (nodelr) prightp : cTreeP (nodel r)

let cTree : UCont cTree = uext cTreeS cTreeP

238 T. Altenkirch, C. McBride, and P. Morris

Implement leaf and node for cTree:

let cleaf : UExt cTree X

let ¢ UExtcTree X =z : X 1 : UExtcTree X
cnode [z r : UExt cTree X

Each container gives rise to a functor. We can implement map for unary
containers by applying the function to be mapped directly to the payload:

C:UCont f:X—Y c¢c:UExtCX

let ucmap C fc : UExt C' Y

ucmap C f ¢ < casec
ucmap (ucont S P) f (uext s g) = uexts (Az = f (g x))

A morphism between functors is a natural transformation, e.g. reverse is a
natural transformation from list to list. We can explicitly represent morphisms
between containers: given unary containers ucontS P and ucont T’), a morphism
is a function on shapes f : S — T and a family of functions on positions, which
assigns to every position in the target a position in the source, i.e.

u:Vs:S=Q(fs)—Ps

The contravariance of the function on positions may be surprising, however, it
can be intuitively understood by the fact that we can always say where a piece of
payload comes from but not where it goes to, since it may be copied or disappear.
Hence we define:

C,D : UCont where f:85—>T uw:VYs:S=Q(fs)— Ps

data UMor C' D : % umor f u : UMor (ucont S P) (ucont T' Q)

To every formal morphism between containers we assign a family of maps,
parametric in the payload type:

uext
— T
let M :UMorC'D c¢: UExt C' X
UMapp mc : UExt D X
UMapp m ¢ < casem umor f u us
UMapp (umor f u) ¢ < case ¢
UMapp (umor f u) (uext s g) = uext
uext (f s) (A\g =g (u s q)) 7

As an example we can define cHead for the container representation of lists,
since we require totality we will define a morphism between cList and cMaybe,
which relates to Haskell’s Maybe type:

let cMaybe = ucont Bool So

cMaybe : UCont

Generic Programming with Dependent Types 239

There are two possible layouts for cMaybe containers:

é <600h
cMaybe cMaybe

There are then two cases to consider when defining our morphism. For the
zero shape of cList, we choose the false shape of cMaybe, leaving no positions
to fill. For any other input shape, we choose true, leaving one position to fill: we
fetch its payload from input position fz—the head.

let n : Nat

. isSucn < casen
isSuc : Bool

isSuc zero = false
isSuc (sucn) = true

n : Nat ¢ : So (isSucn)

let least n ¢ : Finn

least n ¢ < casen
least zero ¢ <« case ¢

least (sucn) g = fz

let cHead : UMor cList cMaybe cHead = umor isSuc least

We illustrate these two cases as follows:

uext uext ofz — 1
zero sucn

I I least (suc n)
uext
true eoh

It is not hard to show that these families of maps are always natural transfor-
mations in the categorical sense, with respect to UExt’s interpretation of unary
containers as functors. Indeed, it turns out that all natural transformations be-
tween functors arising from containers can be given as container morphisms, see
theorem 3.4. in [2].

Exercise 11. Give the representation of reverse as morphism between unary con-
tainers, i.e.

let cRev : UMor cList cList

Exercise 12. While the interpretation of morphismsis full, i.e. every natural trans-
formation comes from a container morphism, the same is not true for containers

240 T. Altenkirch, C. McBride, and P. Morris

as representations of functors. Can you find a functor which is not representable
as a unary container?

5.2 mn-ary Containers

We are now going to interpret strictly positive types Usp as containers by im-
plementing operations on containers which correspond to constructors of Usp.
We reap the fruits by defining a simple evaluation function which evalC which
interprets Usps as containers. First of all we have to generalize our previous
definition to n-ary containers to reflect the presence of variables in Usp:

—fz
Pfzs
n : Nat
data Contn : * —
s: S :
S:x P:Finn—8—x% T TRl g
where cont S P : Contn cont S P P (fs"~1fz) s

It is important to understand that we use only one shape but n sets of positions.
E.g. consider the two-parameter container of leaf and node labelled trees, the
shape of a tree is given by ignoring the data, but the positions for leaf-data and
node-data are different. Accordingly, in our diagrams, we may segment the base
of the triangle to separate the surfaces where each sort of payload attaches and
we index the arrows accordingly.

The extension of an n-ary container is given by an operator on a sequence of
types, generalizing the sketch above to the n-ary case:

ffze— 2 : Xsfz

C :Contn Xs: Finn—x
data Ext C Xs : x :
— ' Xs (fs"1 fz)
P:Finn—S—%x Xs:Finn—x%
s:S8 f:Vi:Finn=Pis— Xsi

where extsf : Ext(contS P) Xs

Ezercise 13. Show that n-ary containers give rise to n-ary functors, i.e. imple-
ment:

C : Contn Xs,Ys:Finn— %

fs i Vi:Finn=Xsi— Ysi xz:ExtC Xs

let map C fsz : Ext C' Vs

5.3 Coproducts and Products

A constant operator is represented by a container which has no positions, e.g.
the following containers represent the empty and the unit type:

Generic Programming with Dependent Types 241

let Zero : Cont n cZero = cont Zero (\i; s = Zero)

let ¢One : Cont n cOne = cont One (\i;s = Zero) <<
cOne

Given two containers C' = contS P, D = contT) we construct their coproduct
or sum, representing a choice between C' and D. On the shapes this is just
the type-theoretic coproduct Plus S T as defined earlier. What is a position in
Plus S T? If our shape is of the form Inl s then it is given by P s, on the other
hand if it is of the form Inr ¢ then it is given by @ . Abstracting shapes and
positions, we arrive at:

dataP:A_)* Q:B—% ab:PlusAB
PPlus P Q ab : %
p:Pa Qb

q:
where pinlp : PPlus P Q (Inl @) pinrq : PPlus P Q (Inr b)

Putting everything together we define the containers as follows, with the two
typical layouts shown in the diagrams:

let C,D : Contn . o
cPlus C D : Contn pinl (p: Pis)
cPlus C D <« case C cPlus ¢ D

cPlus (cont S P) D <« case D —
cPlus (cont S P) (cont T Q)
= cont (Plus S T) pinr(g: Qit)

(N =PPus (P) (Q1) plus O D

Let’s turn our attention to products: on shapes again this is just the type-
theoretic product, Times—each component has a shape. Given two containers
C =contS P,D = cont T (), as above, what are the positions in a product
shape Pair st : Times S T7 There are two possibilities: either the position is in
the left component, then it is given by P s or it is in the right component then
it is given by @ ¢. Abstracting shapes and positions again we define abstractly:

P:A—-x @Q:B—x% ab: TimesAB

data PTimes P Q ab : where

p:Pa qg: Qb
pleft p : PTimes P @ (Pair a b) pright ¢ : PTimes P @ (Pair a b)

and we define the product of containers as:

242 T. Altenkirch, C. McBride, and P. Morris

C,D : Contn

cTimes C D : Contn e
pleft (p: Pis)
cTimes C D <« case C @

let

cTimes (cont S P) D < case D e
cTimes (cont S P) (cont T Q) cTimes C D pright (¢ : @ i ¢)
= cont (Times S T)
(M =PTimes (P i) (Q 1))

Ezxercise 1. Define an operation on containers which interprets constant expo-
nentation as described in section [A3] i.e. define

let A:x C: Contn
cArr A C : Contn

5.4 Structural Operations

If we want to interpret the universe of context-free or strictly positive types
faithfully, we also have to find counterparts for the structural operation vl (last
variable), wk (weakening) and def (local definition).

The interpretation of vl is straightforward: There is only one shape and in the
family of positions P : Fin (suc n) there is only one position at index fz:

—fz

oref| f;
let cvl : Cont (sucn)) e

—fs i

cvl = cont One (\i; s =i = fz) ovi

Weakening isn’t much harder: the shape stays the same but the position indices
get shifted by one assigning no positions to index fz. We define first an auxiliary
operator on positions:

P:Finn—S—% i:Fin(sucn) s:8

let PwkPis:*

Pwk Pis < casei
Pwk Pfzs = Zero
Pwk P (fsi)s = Pis

and use this to define:

let C : Contn 2
cwk C : Cont (sucn) i
s: 5 P
15
cwk C <« case C ewk O

cwk (cont S P) = cont S (Pwk P)

The case of local definition is more interesting. We assume as given two con-
tainers: C' = cont S P : Cont (sucn),D = cont T' Q) : Cont n. We create a new

Generic Programming with Dependent Types 243

n-ary container by binding variable fz of C to D, hence attaching D-structures
to each fz-indexed position of a C-structure. The i-positions of the result cor-
respond either to i-positions of some inner D, or the free (fs i)-positions of the

outer C.
p:PfZSH@Qi(fp)

P(fsi)s
c

To record the shape of the whole thing, we need to store the outer C' shape, some
s : S, and the inner D shapes: there is one for each outer fz-position, hence we
need a function f : Pfzs — T. As before we abstract from the specific position
types and define abstractly:

S:x Fy:8—>x% T:*where s:S f:FPps—T

data Sdef S Py T : sdefs [: Sdef S Py T

What is a position in the new container, for a given index ¢? It must either be
a ‘free’ outer position, given by P (fs), or the pair of a ‘bound’ outer position
with an inner position given by @ i. Hence, we define a general operator for
positions in Sdef, which we can instantiate suitably for each index:

data Py,P':S—% Q:T—% z:5defSP T
Pdef Py P’ Q x : *
p:Ps p:Bs q: Q(fp)

where ppos p : Pdef Py P’ Q (sdef s f) qposp q : Pdef Py P’ Q (sdef s f)

Putting the components together, we can present the definition operator:

C : Cont(sucn) D : Contn
cdef C D : Contn

cdef C D <« case C
cdef (cont S P) D <« case D
cdef (cont S P) (cont T' Q)
= cont (Sdef S (P fz) T') (Ai = Pdef (P fz) (P (fs 1)) (Q 1))

let

5.5 Inductive Types (u)

To interpret the mu constructor we take an n + l-ary container C' = cont S P :
Cont (sucn) and try to find a container which represents the initial algebra with

244 T. Altenkirch, C. McBride, and P. Morris

respect to the ‘bound’ index fz. For each shape s : S, P fz s gives the positions
of recursive subobjects. Meanwhile the positions for i-indexed payload at each
node are given by P (fs).

— -
p:Pfzs—
= O~ |P (550 (/)
g P(fsi)s

Clearly, to be able to construct a tree at all, there must be at least one ‘base case’
s for which P fz s is empty. Otherwise there are no leaves and the corresponding
tree type is empty.

How can we describe the shapes of these trees? At each node, we must supply
the top-level shape, together with a function which gives the shape f the subtrees.
This is given exactly by W S (P fz). Given a shape in form of a W-tree, the
positions at index i correspond to path leading to a P (fs i) somewhere in the
tree. We can define the types of paths in a tree in general:

S:x PP :S—x z:WSPH
data PWS Py P o : %
z:P's p:Pys r:PWSP P (fp)

where herex : PW S Py P/ (Supsf) underpr : PWS Py, P/ (Supsf)

The idea is that a path either exits at the top level node here at a position in
P’ s or continues into the subtree under a positions in P s. Putting shapes and
paths together we arrive at the following definition:

C : Cont (sucn)
cMu C : Contn

cMu C < case C
cMu (cont S P) = cont (W S (P fz)) (Ai ==PW S (Pfz) (P (fsi)))

let

5.6 Interpreting Universes

Since we have constructed semantic counterparts to every syntactic constructor
in Ucf we can interpret any type name by a container with the corresponding
arity:

Generic Programming with Dependent Types 245

a : Ucfn
let evalCa : Contn

evalCa <« reca
evalC a <« casea

evalCvl = cvl
evalC (wk a) = cwk (evalC a)
evalC ‘0’ = cZero
evalC (‘plus’ a b) = cPlus (evalC qa) (evalC b)
evalC ‘1’ = cOne
evalC (‘times’ ¢ b) = cTimes (evalC a) (evalC b)
evalC (def f a) = cdef (evalC f) (evalC a)
evalC (‘mu’ f) = cMu (evalC f)

Combining evalC with Ext we can assign to any name in Ucf an operator on
types:

let @ - UCfecal ‘f‘}s F': =% evala Xs = Ext(evalC a) Xs

The advantage is that we can apply our operators to any types, not just those
which have name. Using the solution to exercise [[3 we also obtain a generic map
function.

So far we have only interpreted the type names, i.e. the inhabitants of Ucf n,
what about the elements, i.e. the inhabitants of Elcfaas? Using Ext we can define
a semantic version of Elcf:

data 1 : Nat h _ a: Contn as: Teln
M CTeln : « V" ctnil : Telzero ctcons a as : Tel (sucn)

Cs : Teln i : Finn
let TelEl Cs ¢ : %

TelEl Cs i < rec Cs
TelEl Cs i <« caset
TelEl Cs fz < case Cs
TelEl (tcons C' Cs) fz = Ext C (TelEl Cs)
TelEl Cs (fs i) « case Cs
TelEl (tcons C' Cs) (fsi) = TelEl Cs i

C : Contn Cs: Teln
let CELC Cs - % CEl1C Cs = Ext C (TelEl Cs)

Exercise 15. ITmplement semantic counterparts of the constructor for Elcf giving
rise to an interpretation of Elcf by CEL Indeed, this interpretation is exhaustive
and disjoint.

246 T. Altenkirch, C. McBride, and P. Morris

5.7 Small Containers

We have given a translation of the context-free types as containers, but as ex-
ercise [[4] shows, these capture more than just the context-free types, in fact
it corresponds to the strictly positive universe. As a result we cannot derive a
semantic version of generic equality which is typical of the smaller universe.

We can, however, define a notion of container which captures precisely the
context-free types and give a semantic version geq for these containers which
we christen ‘small containers’.

A container is small if there is a decidable equality on its shapes and if the
positions at a given shape are finite, so:

A x
DecEq 4 : %

DecEq A = Va,a’: A =Dec(a=d)

let

n : Nat
data SContn : %

S % egS : DecEqS P :Finn— S — Nat

where scont S eqS P : SCont n

C : SCont Xs : Finn — x
data SExt C Xs : %

s:8 f:Vi:Finn=Fin(Pis)— Xsi

where sext s f : SCont S eq P

We can redefine the variable case, disjoint union, products and the fix point
operator for these containers, for instance:

C,D : SContn
SCTimes C D : Contn

SCTimes C' D <« case C
SCTimes (scont S eqS P) D < case D
SCTimes (scont S eqS P) (scont T eqT Q)
= scont (Times S T)
(TimesEq egS eqT)
(Ni; s =plus (Pis)(Qis))

let

Where TimesEq is a proof that cartesian product preserves decidable equality
by comparing pointwise:

eqS : DecEq S eqT : DecEq T

let TimesEq eqS eqT : DecEq (Times S T')

Generic Programming with Dependent Types 247

Our generic equality for small containers is then a proof that SExt preserves
equality:

C :SContn Xs : Finn —x egs : Vi:Finn = DecEq (Xs i)

let SContEq C Xs eqs : DecEq (SExt C' Xs)

Ezercise 16. Complete the construction of SCTimes and develop operators con-
structing disjoint union, local definition, fixed points, and variables for small
containers. Finally construct the definition of SContEq.

To work with Epigram’s built in equality you will need to use the fact that
application preserves equality:

letfg S—T ab: S f=9g q:a=0
applEqp q : f a=gb

applEqp g < casep
applEqrefl ¢ < case ¢
applEq refl refl = refl

And that constructors are disjoint, so for example Inl ¢ = Inr b is a provably
empty type:

a:A b:B p:(lnla:PlusAB)=(Inrb : Plus A B)

let Inlneqlnr p : X

Inlneqlnr p < casep

6 Derivatives

In [25] Huet introduced the zipper as a datatype to represent a position within a
tree. The basic idea is that at every step on the path to the current position, we
remember the context left over. E.g. in the example of unlabelled binary trees,

data where Lr: BT
BT : % leaf : BT nodelr : BT

the corresponding zipper type is:

data Zipper : %

ere
[: Zipper r : BT [:BT r : Zipper

where left [r : Zipper right [r : Zipper here : Zipper

248 T. Altenkirch, C. McBride, and P. Morris

We can think of a Zipper as a tree with one subtree chopped out at the place
marked here. One of the operations on a zipper is to plug a binary tree into its
hole, i.e. we define[™

z @ ZLipper t : BT

let plugzt : BT

plugzt < recz
plug z t < casez
plug (left [r) t = node (pluglt) r
plug (right) t = node [(plug r t)
plugheret = ¢

Clearly, the zipper is a generic construction which should certainly work on
any context-free type. When trying to express the general scheme of a zipper,
Conor McBride realised that a zipper is always a sequence of basic steps which
arise as the formal derivative of the functor defining the datatype. Le. if our
datatype is uX.F' X, e.g. pX.1+ X x X in the example of binary trees, then the
corresponding zipper is List(OF (uX.F X)). In the binary tree example F' X =
1+ X x X and OF X = 2 x X. Indeed Zipper is isomorphic to List (2 x BT).

6.1 Derivatives of Context-Free Types

We will here concentrate on the notion of the partial derivative of an n-ary
operator on types, which corresponds to the type of one hole contexts of the
given type. This is an alternative explanation of the formal laws of derivatives
and we shall define an operator on context-free types following this intuition:

let @:Ucfn i:Finn
partial a i : Ucf n

The parameter 7 denotes the argument on which we take the derivative, indeed
the partial derivative really is a variable binding operation, this is obliterated
by the usual notation g)}; which really binds X.

We define this operation by structural recursion on a, let’s consider the poly-
nomial cases: what is the derivative, i.e. the type of one hole contexts of ‘plus’ab?
We either have a hole in an element of a or a hole in an element of b, hence:

partial (‘plus’ a b) i = ‘plus’ (partial a i) (partial b 7)

Maybe slightly more interesting, what is the type of one-hole contexts of ‘times’a b?
A hole in a pair is either a hole in the first component, leaving the second intact or
symmetrically, a hole in the second, leaving the first intact. Hence we arrive at

10 Here we have chosen the root-to-hole representation of contexts. Huet’s hole-to-root
presentation uses the same datatype. Both are useful, with the choice depending on
where you need the most rapid access.

Generic Programming with Dependent Types 249

partial (‘times’ a b) i = ‘plus’ (‘times’ (partial a i) b) (‘times’ a (partial b 7))

partial a ¢ a

b partial b ¢

which indeed corresponds to the formal derivative of a product, although we
arrived at it using a rather different explanation. Unsurprisingly, the derivative
of a constant is ‘0’, since there are no holes to plug:

partial ‘0’7 = ‘0’
partial ‘1’7 = ‘0’

Structural operations like variables and weakening are usually ignored in Cal-
culus, an omission we will have to fill here to be able to implement partial for
those cases. In both cases we have to inspect i: for vl we have exactly one choice
if 4 = fz and none otherwise, hence we have:

partial vl fz = ‘1’
partial vl (fsi) = ‘O’

In the case of wk a the situation is reversed, there is no choice if i = fz and
otherwise we recur structurally:

partial (wk a) fz = ‘O’
partial (wk a) (fsi) = wk (partial a 7)

The case of local definitions def f a corresponds to the chain rule in Calculus.
An i- hole in an element of def f a is either a (fs 7) hole in the outer f, or it is
a hole in f for the defined variable fz together with an ¢-hole in some a. More
formally we have:

partial (def f a) i
= ‘plus’ (def (partial f (fsi)) a) (‘times’ (def (partial f fz) a) (partial a 7))

250 T. Altenkirch, C. McBride, and P. Morris

The case for initial algebras ‘mu’ f has no counterpart in calculus. However,
it can be derived using the chain rule above: we know that ‘mu’ f is isomorphic
to def f (‘'mu’ f). Now using the chain rule we arrive at

‘plus’ (def (partial f (fs 7)) (‘mu’ f))
(‘times’ (def (partial f fz) (‘mu’ f)) (partial (‘mu’ f) 7))

This expression is recursive in partial (‘mu’ f) ¢ hence we obtain the formal
derivative by taking the initial algebra of it, recording the contexts for a sequence
of internal steps through the tree, terminated by the node with the external hole:

partial (‘mu’ f) i = ‘mu’ (‘plus’ (wk (def (partial f (fs 7)) (‘mu’ f)))
(‘times’ (wk (def (partial f fz) (‘mu’ f))) vl))

<

A closer analysis shows that the use of initial algebras here is justified by the
fact that we are only interested in holes which appear at some finite depths.
As an example consider the derivative of lists partial list fz: after applying
some simplification we obtain ‘mu’(‘plus’ (wklist) (‘times’vl(wkvl))) or reexpressed
in a more standard notation pX.(list A)+AxX, which can be easily seen to
correspond to lists with a hole for A.
We summarize the definition of partial:

partial a i < reca
partial a i < casea
partial vl ¢ < case:
partial vl fz = ‘1’
partial vl (fs i) = ‘0’
partial (wk a) i < casei
partial (wk a) fz = ‘0’
partial (wk a) (fsi) = wk (partial a 1)
partial ‘0’ ¢ = ‘O’
partial (‘plus’ a b) i = ‘plus’ (partial a i) (partial b 7)
partial ‘1’ ¢ = ‘O’
partial (‘times’ a b) i =
‘plus’ (‘times’ (partial a i) b) (‘times’ a (partial b 7))
partial (def f a)i =
‘plus’ (def (partial f (fs 7)) a) (‘times’ (def (partial f fz) a) (partial a 7))
partial (‘mu’ f) i = ‘mu’ (‘plus’ (wk (def (partial f (fs 7)) (‘mu’ f)))
(‘times’ (wk (def (partial f fz) (‘mu’ f))) vl))

Generic Programming with Dependent Types 251

Ezercise 17. Calculate (by hand) the derivative of rose trees, i.e. the value of
partial fz rt

6.2 Generic Plugging

To convince ourselves that the definition of derivatives as one hole contexts given
above is correct we derivd] a generic version of the generic plugging operation:

a i x: Elcf (partial a i) as y : Elcf (vari) as

let gplugaizy : Elcf aas

That is given an element z of a partial derivative of a at i we can fill the hole
with an element of the corresponding type of the telescope, obtaining an element
of a.

We construct gplug by recursion over z, however, unlike in the previous ex-
amples, which were completely data driven we have to analyse the type directly,
i.e. we have to invoke case a. We discuss the cases:

variable

gplugvlfzvoidy = vy
gplugvl (fsi) z y < casex

If the index is fz the argument y is the filler we are looking for, otherwise the
derivative is the empty type and we eliminate it by a vacuous case analysis.

weakening

gplug (wk a) fzz y < casex
gplug (wk a) (fs i) (pop z) (pop y) = pop (gplug a iz y)

This is in some way dual to the previous case: if the index is fz we have the
empty derivative, otherwise we recur.

constant types

gplug‘0’izy < casex
gplug‘'l’izy < casex

are easy because impossible, since the derivative is the empty type.
disjoint union

gplug (‘plus’ a b) i (inl za) y = inl (gplug a i za y)
gplug (‘plus’ a b) i (inr zb) y = inr (gplug b i xb y)

the injections are just carried through.
1 We were unable to convince Epigram to check all of the definition below due to a

space leak in the current implementation. We are hopeful that this will be fixed in
the next release of Epigram.

252 T. Altenkirch, C. McBride, and P. Morris

Product

gplug (‘times’ a b) ¢ (inl (pair za b)) = pair (gplug a i za y) zb
gplug (‘times’ a b) i (inr (pair za b)) = pair za (gplug b i zb y)

The derivative records the information in which component of the pair we
can find the hole.

Local definition

gplug (def f a) i (inl (push 2)) y = push (gplug f (fs i) = (pop y))
gplug (def f a) i (inr (pair (push z) q) y =
push (gplug f fz z (top (gplug a i q y)))

In the first case the hole is in top-level (f) tree but not at the first variable,
which is used in the definition. In the 2nd case the hole is in a subtree (a)
which means we have to plug the hole there and then use the result to plug
a hole in the top-level tree.

Ezercise 18. Complete (using pen and paper) the definition of gplug by imple-
menting the case for mu.

6.3 Derivatives of Containers

Previously, we have defined derivatives by induction over the syntax of types.
Using containers we can give a more direct, semantic definition. The basic idea
can be related to derivatives of polynomials, i.e. the derivative of fz = z" is
fle=nxa" ! As a first step we need to find a type-theoretic counterpart to
the predecessor of a type by removing one element of the type. We define:

/. . — 4/
A:x a: A ere @ : A na : Not(a=d)

data . . .
Minus A a : x minus @ na : Minus A o’

We can embed Minus 4 a back into A:

t merznt/l'%@‘;lla emb m < casem
’ emb (minus a’ na) = o

le

We can analyse A in terms of Minus A a by defining a view. An element of A
is either a or it is in the range of emb:

a;a A

data MinusV a a’

m : Minus 4 a

where same a : MinusV a a otherm : MinusV a (emb m)

Generic Programming with Dependent Types 253
This view is exhaustive, if A has a decidable equality:

a,a’ : A eq : Dec(a=d)

let minusV’ a a’ eq : MinusV a o’

minusV’ a a’ eq < case eq
minusV’ a a (yesrefl) = samea
minusV’ a ¢’ (no f) = other (minus da’ f)

eqd : DecEq A a,d : A

let minusV eg4 a o’ : MinusV a o

minusV eg4 a o’ = minusV’ a o’ (eqA a ')

We are now ready to construct the derivative of containers and implement
a variant plug for containers. To simplify the presentation we first restrict our
attention to unary containers.

Given a unary container ucont S P its derivative is given by shapes which
are the original shapes together with a chosen position, i.e. Sigma S P. The new
type of positions is obtained by subtracting this chosen element from P hence
we define:

P:S—x% sp:SigmaSP

let derivP P sp : x

derivP P sp < case sp
derivP P (tup s p) = Minus (P s)p

and hence the derivative of a unary container is given by:

let C : UCont
derivC C : UCont
derivC C < case C
derivC (ucont S P) = ucont (Sigma S P) (derivP P)

While the definition above works for any unary container, we need decidability
of equality on positions to define the generic plugging operation. Intuitively, we
have to be able to differentiate between position to identify the location of a hole.
Hence, only containers with a decidable equality are differentiable. We define a
predicate on containers:

C : UCont decP : V¥s:S =DecEq (P s)
data DecUCont C' : where decUCont decP : DecUCont (ucont S P)

Given a decidable unary container we can define the function uplug which given
an element of the extension of the derivative of a container z : UExt(derivC ()X

and an element y : X we can plug the hole with y thus obtaining an element of
UExt C' X:

254 T. Altenkirch, C. McBride, and P. Morris

eq : DecEqA a: A
f :MinusAa— X
z:X ad: A

let mplugeqafza : X

mplug eqafzad < viewminusV eq a o
mplug eqafra = x
mplug eqafz(embm) = fm

C : UCont d : DecUCont C
z : UExt (derivC C) X y : X
uplug Cdzy : UExt C X

uplug C dzy < caseC
uplug (ucont S P)dzy < cased
uplug (ucont S P) (decUCont decP) z y < casex
uplug (ucont S P) (decUCont decP) (uext sp f) y < case sp
uplug (ucont S P) (decUCont decP) (uext (tup s p) f) y
= uext a (mplug (decP a) b f y)

Exercise 19. Extend the derivative operator for containers to n-ary containers,
i.e. define

let C :Contn i:Finn
partialC C'i : Contn

To extend the plug operator we have to define decidability for an n-ary container.
We also need to exploit that equality for finite types is decidable.

7 Conclusions and Further Work

Using dependent types we were able to define different universes and generic
operations on them. We have studied two fundamentally different approaches:
a semantic approach, first using finite types and the container types and a syn-
tactic approach where the elements are defined inductively. Further work needs
to be done to relate the two more precisely, they are only two views of the
same collection of types. We have already observed that there is a trade-off be-
tween the size of the universe, i.e. the collection of types definable within it, and
the number of generic operations. The previous section suggests that there is a
universe between the context-free types and the strictly positive types: the dif-
ferentiable types, i.e. the types with a decidable equality on positions. Previous
work in a more categorical framework [7] shows already that the types which are
obtained by closing context-free types under a coinductive type former (v) are
still differentiable.

The size of a universe is not the only parameter we can very, the universes we
have considered here are still very coarse. E.g. while we have a more refined type
system on the meta-level, dependent types, this is not reflected in our universes.
We have no names for the family of finite types, the vectors or the family of

Generic Programming with Dependent Types 255

elements of a universe itself. Recent work shows that it is possible to extend
both the syntactic and the semantic approach to capture families of types, see
[3518]. Another direction to pursue is to allow types where the positions are result
of a quotient, like bags or multisets. We have already investigated this direction
from a categorical point of view [6]; a typetheoretic approach requires a Type
Theory which allows quotient types. Here our current work on Observational
Type Theory [10] fits in very well.

Apart from the more theoretical questions regarding universes of datatypes
there are more pragmatic issues. We don’t want to work with isomorphic copies
of our datatypes, but we want to be able to access the top-level types them-
selves. We are working on a new implementation of Epigram which will provide
a quotation mechanism which makes the top-level universe accessible for the pro-
grammer. We also hope to be able to find a good pragmatic answer to vary the
level of genericity, i.e. to be able to define generic operations for the appropriate
universe without repeating definitions.

References

1. Abbott, M.: Categories of Containers. PhD thesis, University of Leicester (2003)

2. Abbott, M., Altenkirch, T., Ghani, N.: Categories of containers. In: Proceedings
of Foundations of Software Science and Computation Structures (2003)

3. Abbott, M., Altenkirch, T., Ghani, N.: Representing nested inductive types using
W-types. In: Diaz, J., Karhumaki, J., Lepistd, A., Sannella, D. (eds.) ICALP 2004.
LNCS, vol. 3142, pp. 59-71. Springer, Heidelberg (2004)

4. Abbott, M., Altenkirch, T., Ghani, N.: Containers - constructing strictly positive
types. Theoretical Computer Science 342, 3-27 (2005) (Applied Semantics: Selected
Topics)

5. Abbott, M., Altenkirch, T., Ghani, N., McBride, C.: Derivatives of containers. In:
Hofmann, M.O. (ed.) TLCA 2003. LNCS, vol. 2701, Springer, Heidelberg (2003)

6. Abbott, M., Altenkirch, T., Ghani, N., McBride, C.: Constructing polymorphic
programs with quotient types. In: Kozen, D. (ed.) MPC 2004. LNCS, vol. 3125,
Springer, Heidelberg (2004)

7. Abbott, M., Altenkirch, T., Ghani, N., McBride, C.: 0 for data. Fundamentae
Informatica 65(1,2), 1-28 (2005) (Special Issue on Typed Lambda Calculi and
Applications 2003)

8. Altenkirch, T., Ghani, N., Hancock, P., McBride, C., Morris, P.: Indexed containers.
Manuscript, available online (February 2006)

9. Altenkirch, T., McBride, C.: Generic programming within dependently typed pro-
gramming. In: Generic Programming, 2003. Proceedings of the IFIP TC2 Working
Conference on Generic Programming, Schloss Dagstuhl (July 2002)

10. Altenkirch, T., McBride, C.: Towards observational type theory. Manuscript, avail-
able online (February 2006)

11. Altenkirch, T., McBride, C., McKinna, J.: Why dependent types matter. Manu-
script, available online (April 2005)

12. Altenkirch, T., McBride, C., Morris, P.: Code for generic programming with de-
pendent types (2007), http://www.e-pig.org/downloads/GPwDT

13. Altenkirch, T., Uustalu, T.: Normalization by evaluation for A~. In: Kameyama,
Y., Stuckey, P.J. (eds.) FLOPS 2004. LNCS, vol. 2998, pp. 260-275. Springer,
Heidelberg (2004)

http://www.e-pig.org/downloads/GPwDT

256

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

T. Altenkirch, C. McBride, and P. Morris

Loeh, A., Jeuring, J., (ed.) Clarke, D., Hinze, R., Rodriguez, A., de Wit, J.: Generic
Haskell User’s Guide - Version 1.42 (Coral). Technical Report UU-CS-2005-004,
Institute of Information and Computing Sciences, Utrecht University (2005)
Backhouse, R., Jansson, P., Jeuring, J., Meertens, L.: Generic Programming—An
Introduction. In: Swierstra, S.D., Oliveira, J.N. (eds.) AFP 1998. LNCS, vol. 1608,
pp. 28-115. Springer, Heidelberg (1999)

Benke, M., Dybjer, P., Jansson, P.: Universes for generic programs and proofs in
dependent type theory. Nordic Journal of Computing 10(4), 265-289 (2003)

Bird, R., de Moor, O.: Algebra of Programming. Prentice Hall, Englewood Cliffs
(1997)

Crary, K., Weirich, S., Morrisett, G.: Intensional polymorphism in type erasure
semantics. Journal of Functional Programming 12(6), 567-600 (2002)

Dybjer, P.: Inductive Sets and Families in Martin-Lof’s Type Theory. In: Huet, G.,
Plotkin, G. (eds.) Logical Frameworks. CUP (1991)

Dybjer, P., Setzer, A.: A finite axiomatization of inductive-recursive definitions.
Typed Lambda Calculi and Applications 1581, 129-146 (1999)

Dybjer, P., Setzer, A.: Indexed induction-recursion. Journal of Logic and Algebraic
Programming 66(1), 1-49 (2006)

Hinze, R.: Generic programs and proofs. Habilitationsschrift, Universitat Bonn
(2000)

Hinze, R., Loh, A.: Scrap Your Boilerplate Revolutions. In: Uustalu, T. (ed.) MPC
2006. LNCS, vol. 4014, pp. 180-208. Springer, Heidelberg (2006)

Hinze, R., Loh, A., Oliveira, B.C.D.S.: Scrap Your Boilerplate Reloaded. In: Hagiya,
M., Wadler, P. (eds.) FLOPS 2006. LNCS, vol. 3945, pp. 13-29. Springer, Heidel-
berg (2006)

Huet, G.: The Zipper. Journal of Functional Programming 7(5), 549-554 (1997)
Loh, A.: Exploring Generic Haskell. PhD thesis, Utrecht University, Netherlands
(September 2004)

Luo, Z., Pollack, R.: LEGO Proof Development System: User’s Manual. Techni-
cal Report ECS-LFCS-92-211, Laboratory for Foundations of Computer Science,
University of Edinburgh (1992)

Magnusson, L., Nordstrom, B.: The ALF proof editor and its proof engine. In:
Barendregt, H., Nipkow, T. (eds.) TYPES 1993. LNCS, vol. 806, Springer, Heidel-
berg (1994)

Martin-Lof, P.: Intuitionistic Type Theory. Bibliopolis Napoli (1984)

McBride, C.: The Derivative of a Regular Type is its Type of One-Hole Contexts.
Available online (2001)

McBride, C.: Epigram (2004), http://www.e-pig.org/

McBride, C.: Epigram: Practical programming with dependent types. In: Vene, V.,
Uustalu, T. (eds.) AFP 2004. LNCS, vol. 3622, Springer, Heidelberg (2005)
McBride, C., McKinna, J.: The view from the left. Journal of Functional Program-
ming 14(1) (2004)

McBride, F.: Computer Aided Manipulation of Symbols. PhD thesis, Queen’s Uni-
versity of Belfast (1970)

Morris, P., Altenkirch, T., Ghani, N.: Constructing strictly positive families. In:
The Australasian Theory Symposium (CATS2007) (2007)

Morris, P., Altenkirch, T., McBride, C.: Exploring the regular tree types. In:
Filliatre, J.-C., Paulin-Mohring, C., Werner, B. (eds.) TYPES 2004. LNCS,
vol. 3839, Springer, Heidelberg (2006)

http://www.e-pig.org/

37.

38.

39.

40.

41.

Generic Programming with Dependent Types 257

Pfeifer, H., Ruefl; H.: Polytypic abstraction in type theory. In: Backhouse, R.,
Sheard, T. (eds.) Workshop on Generic Programming (WGP’98). Dept. of Com-
puting Science, Chalmers Univ. of Techn. and Géteborg Univ., (June 1998)
Nordstrom, B., Petersson, K., Smith, J.: Programming in Martin-L&f’s type theory:
an introduction. Oxford University Press, Oxford (1990)

Vytiniotis, D., Weirich, S., Jones, S.: Boxy type inference for higher-rank types
and impredicativity. In: Proceedings of the International Conference on Functional
Programming (ICFP 2006) (2006)

Wadler, P.: Views: A way for pattern matching to cohabit with data abstraction.
In: Proceedings of POPL ’87, ACM, New York (1987)

Weirich, S.: RepLib: A library for derivable type classes. In: Loh, A. (ed.) Proceed-
ings of the ACM Haskell Workshop, 2006 (2006)

Generic Programming in {2mega

Tim Sheard

Computer Science Department
Maseeh College of Engineering and Computer Science
Portland State University

1 Introduction

“Generic programming is about making programs more adaptable by mak-
ing them more general. Generic programs often embody non-traditional
kinds of abstraction; ordinary programs are obtained from them by suit-
ably instantiating their parameters. In contrast with normal programs, the
parameters of a generic program are often quite rich in structure; for exam-
ple they may be other programs, types or type constructors, class hierar-
chies, or even programming paradigms.”

I wrote these words for the introduction of the first workshop on generic program-
ming. They remain true today. But, in the intervening years, the languages in
which we program have acquired ever richer abstraction mechanisms, and many
non-traditional kinds of abstraction have become ordinary. This is certainly true
of languages which support dependent types where “generic programs” often be-
come ordinary programs. The language Qdmega supports a variant of dependent
types (where types may depend upon type indexes, rather than values), and the
purpose of these notes is to explain how we can exploit these types to build
generic programs in Qmega. The first point I wish to make, is that the richer
the type system, the more generic the programs possible.

The second point I wish to make is that generic programs, while very general,
tend to introduce a layer of interpretation, and may suffer from certain kinds
of inefficiencies. The use of staging is a natural mechanism for removing these
inefficiencies. I demonstrate that the use of index-dependent types is orthogonal
to the use of staginﬂ, and in general the two techniques often complement each
other.

1.1 Genericity and the Curry-Howard Isomorphism

Qmega’s type system makes it possible to realize the Curry-Howard Isomor-
phism. This states that programs are proofs, and types are properties. When we
write prog; :: type, we are stating both that prog, has type typei, and prog,
is a proof of the property type;. In Qmega, this duality is the basis of generic
programming. Qmega’s type system allows us to type many programs that are

! Fully dependent types are also orthogonal to staging, but that isn’t illustrated in
this paper.

R. Backhouse et al. (Eds.): Datatype-Generic Programming 2006, LNCS 4719, pp. 258 2007.
© Springer-Verlag Berlin Heidelberg 2007

Generic Programming in (2mega 259

not typable in a language like Haskell. This allows 2mega to support a num-
ber of new programming patterns including a large class of programs, which in
other languages, are considered generic. Generic programming is all about ab-
straction. We show how to use the rich structures available in Qmega to build
unusual abstractions with all the properties of generic programs.

2 The Structure of (2mega

We have adopted the following structure for the 2mega language. Qmega is
a language with an infinite hierarchy of computational levels: value, type, kind,
sort, etc. Computation at the value level is performed by reduction, and is largely
unconstrained. Computation at all higher levels is constrained in several ways.
First, all “data” at the type level and above is inductively defined data (no floats
or primitive data for example). Second, functions at the type level and above
must be inductively sequential (see Appendix [A]). This is a constraint on the
form of the definition, not on the expressiveness of the language.

Terms at each level are classified by terms at the next level. Thus values are
classified by types, types are classified by kinds, kinds are classified by sorts, etc.
Programmers are allowed to introduce new terms and functions at every level,
but any particular program will have terms at only a finite number of levels. We
illustrate the level hierarchy for the many of the examples given in this paper in
Figure

We maintain a strict phase distinction — the classification of a term at level n
cannot depend upon terms at lower levels. For example, no types can depend on
values, and no kinds can depend on types. We formalize properties of programs
by exploiting the Curry-Howard isomorphism. Terms at computational level n,
are used as proofs about terms at level n 4 1. We use indexed types to maintain
a strict and formal connection between the two levels, and singleton types to
maintain the strict separation between values and types.

3 A Simple Example

To illustrate the hierarchy of computational levels we give the following two-level
example which uses natural numbers as a type index to lists that record their
length in their type.

First, we introduce tree-like data (the natural numbers, Nat) at the type level
by using the data introduction form. This form is a generalization over the data
declaration in Haskell [I5].

data Nat :: *1 where
Z :: Nat
S :: Nat 7> Nat

The line “data Nat :: *1 where” indicates that Nat is classified by *1 (rather
than *0), which tells the programmer that Nat is a kind (rather than a type),

260 T. Sheard

and that Z and S are types (rather than values). The classifiers *0, *1, *¥2, etc.
indicate the level of a term. All values are classified by types that are classified
by *0. All types are classified by kinds that are classified by *1. All kinds are
classified by sorts that are classified by *2, etc. This is illustrated with great
detail in Figure [l

Second, we write a function at the type level over this data (plus). At the type
level and higher, we distinguish function application from constructor application
by surrounding function application by braces ({ and }). For example, we write
S x for constructor application, and {plus x y} for function application.

plus:: Nat "> Nat "> Nat
{plus Z m} = m
{plus (S n) m} = S {plus n m}

Third, using the data introduction form at the wvalue level, we introduce the
algebraic data structure (Seq). The types of such values are indexed by the
natural numbers. These indexes describe an invariant about the constructed
values — their length appears in their type — consider the type of 11.

data Seq:: *0 "> Nat "> *0 where
Snil :: Seq a Z
Scons:: a => Seq an -> Seq a (S n)

11 = (Scons 3 (Scons 5 Snil)) :: Seq Int (S(S Z))

Finally, we introduce a function at the value level over Seq values (app). The
type of app describes one of its important properties — there is a functional
relationship between the lengths of its two inputs, and the length of its output.
app:: Seq an -> Seq am -> Seq a {plus n m}
app Snil ys = ys
app (Scons x xs) ys = Scons x (app xs ys)

To see that the app is well typed, the type checker does the following. The
expected type is the type given in the function prototype. We compute the
type of both the left- and right-hand-side of the equation defining a clause. We
compare the expected type with the computed type for both the left- and right-
hand-sides. This comparison generates some necessary equalities (for each side)
to make the expected and computed types equal. We assume the left-hand-side
equalities to prove the right-hand-side equalities. To see this in action, consider
the second clause of the definition of app.

expected type Seq a n — Seq a m — Seq a {plus n m}

equation app (Scons x xs) ys = Scons x (app xs ys)
computed type Seq a (Sb) —Seq am— Seq a (S {plus b m})
equalities n = (8 b) = {plus n m}= S({plus b m})

The left-hand-side equalities let us assume n = S b. The right-hand-side equal-
ities, require us to establish that {plus n m} = S{plus b m}. Using the as-
sumption that n = S b, we are left with the requirement that {plus (S b) m}
= S{plus b m}, which is easy to prove using the definition of plus.

Generic Programming in (2mega 261

“— value name space | type name space —

value | type | kind | sort
| Tree 10 %0 > *0 1okl
Fork :: Tree a -> Tree a -> Tree a 11 %0 tooxl
Node :ra -> Tree a HE Y crokl
Tip :: Tree a HEE (0] HEE]
|z :: Nat tr okl
(] :: Nat "> Nat LS}
| plus :: Nat "> Nat ~> Nat tooxl
| {plus #1 #3 } :: Nat 1okl
| Seq 10 %0 "> Nat ~> *0 B S|
Snil ::Seq a Z HEE V) HE !
Scons :ta->8Seq ab ->Seqa (Sb) 11 %0 troxl
app ::Seq an ->Seq am -> Seq a {plus n m} :: *0 11kl
| Fahrenheit :: TempUnit tooxl
| Celsius :: TempUnit A !
| Kelvin :: TempUnit HEL S
| Degree :: TempUnit ~> *0 toxl
F :: Float -> Degree Fahrenheit 1 %0 1okl
C :: Float -> Degree Celsius 11 %0 tookl
K :: Float -> Degree Kelvin 11 %0 1okl
plusk :: Degree a -> Degree b -> Degree Kelvin :: *0 vkl
| T :: Boolean tookl
| F :: Boolean 1okl
| le :: Nat "> Nat > Boolean :: *1
| {le #0 #2} :: Boolean troxl
| LE :: Nat "> Nat > *0 tookl
LeZ ::LE Z a HEE] HEE]
LeS ::LEnm->LE (Sn) (Sm 11 %0 troxl
| Even :: Nat ™> *0 tookl
EvenZ :: Even Z 11 %0 A !
EvenSS :: Even n -> Even (S(S n)) 11 %0 troxl

Fig. 1. The level hierarchy for some of the examples in the paper

The different levels of the objects introduced in this example (and elsewhere
in the paper) are plotted in Figure[ll The reader may wish to consult the figure
to help visualize the relationships involved.

3.1 Overview

The following sections tell a rather complex story that will culminate with some
generic programs written as ordinary programs in Qmega. To reach that end,
we introduce a few tools. The tools include some backward compatible additions
to Haskell, a number of interesting programming patterns that exploit the ad-
ditions, and a set of illustrative examples. The new features we have added to
Haskell that are discussed in this paper include:

— Data Structures at All Levels. Kinds are a type system for classifying
types. Sorts are a type system for classifying kinds. There is no practical
limit to this hierarchy. In Qmega, programmers can introduce new tree-like
structures at any level. In Haskell all introduced datatypes are classified

262 T. Sheard

by *0. Le. the introduced types classify only values. In Figure [I Haskell
types are illustrated by Tree, which is a type constructor which classifies its
constructor functions (Fork, Node, and Tip) which are values. In Qmega, the
data declaration is generalized to all levels.

— GADTs. Generalized Algebraic Datatypes allow constructor functions to
have more general types than the types supported by the data declaration
in Haskell. GADTs are important because the additional generality allows
programmer to express properties of types as witness types, proof objects, or
singleton types. GADTSs are the machinery that support the Curry-Howard
isomorphism in Qmega. In Figure [[l the types Seq, Degree, LE and Even
require the generality introduced by GADTs.

— Functions at All Levels. Qmega supports functions over the tree-like
structures at all levels. Such functions are written by pattern matching equa-
tions, in much the same manner one writes functions over data at the value
level in Haskell. We restrict the form of such definitions to be inductively se-
quential (See Appendix [A]). This ensures a sound and complete strategy for
answering certain type-checking time questions by the use of narrowing. The
class of inductively sequential functions is a large one, in fact every Haskell
function has an inductively sequential definition. The inductively sequential
restriction affects the form of the equations, and not the functions that can
be expressed. In Figure [l plus and le are functions at the type level.

— Code Constructing Quasi-Quotes. 2mega supports the run-time gener-
ation of code, along the lines of MetaML [I§] and Template Haskell [I9]. The
meta-programming ability of code generation allows us to remove a layer of
interpretation from our generic programs, that makes them efficient as well
as general.

Some of the following sections are labeled with Feature if they are an addition
to Haskell, Pattern if they are a paradigmatic use of the features to accomplish
a particular end, or Example if they illustrate an important concept.

3.2 Relation to Other Systems

In order to make Q2mega accessible to as broad an audience as possible, it is built
around a framework which appears to the user to be a pure but strict version of
Haskell. Qmega was designed, first and foremost, to be to be a programming lan-
guage. Our goal was to design a language where program specifications, program
properties, program analyses, proofs about programs, and programs themselves,
are all represented using a single unifying notion of term. Thus programmers
communicate many different things using the same language.

Our second goal was to make (2mega a logic, in which our reasoning would
be sound. This is the basis of our decision to make Q2mega strict. We made this
design decision because the use of GADTSs as proof objects requires that bottom
not be an inhabitant of certain types. Strictness is part of our eventual strategy
to accomplish that goal. This goal is not yet achieved.

Generic Programming in (2mega 263

There are many systems where soundness was the principal goal, and has been
achieved. All of the examples, except for the staged examples, could be done in
these languages as well. Such systems were principally designed to be logical
frameworks or theorem provers. These include Inductive Families [7J9], theorem
provers (Coq [23], Isabelle [14]), logical frameworks (Twelf [16], LEGO [11]), and
proof assistants (ALF [13], Agda [6]). Recently, there has been much interest in
systems that use dependent types to build “practical” systems that are part
language, part reasoning system. These systems include Augustsson’s Cayenne
language [32], McBride’s Epigram [12], Stump’s Rogue-Sigma-Pi [2124], Xi and
Pfenning’s Dependent ML [27]], and Xi’s Applied Type Systems [26/5]. In fact,
we owe a large debt to all these systems for inspiration.

We realize that just a little loss in soundness makes all our reasoning claims
vacuous, but we are working to fill these gaps. Our goal is to do this in a different
manner than the system listed above, which require all functions to be total in
order to ensure soundness. We wish to use types to separate terminating func-
tions from non-terminating functions. And make logical claims only about the
terminating fragment of the language. This seems almost a necessary condition
for a system that claims to be a programming language. In any case, these issues
have little effect on our use of Qmega to program generic programs, since logical
soundness is not an issue in this domain.

4 Introduction to Q2mega

Throughout this section we introduce the features of (2mega by comparing and
contrasting them with the features of Haskell. We assume a basic understanding
of Haskell programs. In particular, we assume the reader understands about the
introduction of algebraic data types with the data declaration (which introduces
a type constructor and some constructor constants and functions), and the use
of writing pattern matching equations to define functions.

Feature: Kinds. We can introduce new tree-like data at any level, including
the type level and higher. The data declaration introduces both the constructors
for tree-like data and the object that classifies these structures. We indicate the
level where these objects reside using *0, *1, *2, etc. in the data declaration.
Consider the kinds Nat (introduced earlier), Boolean, and TempUnit:

data Nat :: *1 where data TempUnit:: *1 where
Z :: Nat Fahrenheit:: TempUnit
S :: Nat "> Nat Celsius:: TempUnit

Kelvin:: TempUnit
data Boolean:: *1 where
T:: Boolean
F:: Boolean

The new tree-like data at the type level are constructed by the type-constants
(z, T, F, Fahrenheit, Celsius, and Kelvin), and type constructors (S). The
kinds Nat, Boolean, and TempUnit classify these structures, as shown explicitly

264 T. Sheard

in the declaration. For example Celsius is classified by TempUnit, and S is a
constructor from Nat to Nat. Think of the operator > as an function arrow at
the type level. Note that while Z, T, F, Fahrenheit, Celsius, and Kelvin live
at the type level, there are no values classified by them. Again, see Figure [to
see where these objects reside in the larger picture.

Even though there are no values classified by these types, they are very useful.
Instead of using them to classify values, we use them as indexes to value level
data, i.e. types like Degree Celsiusand Seq a (S Z).The indexes like Celsius
and S z indicate static (type-checking time) properties of values. For example,
a value with type Seq a (S Z) is statically guaranteed to have length 1.

Feature: GADTSs. Generalized Algebraic Datatypes allow constructor func-
tions to have more general types than the types supported by data declaration
in Haskell. GADTs are important because the additional generality allows pro-
grammer to express properties of types using type indexes and witnesses (or
proof) objects. The data declaration in Qmega defines generalized algebraic
datatypes (GADT). These are characterized by explicitly classifying construc-
tors in a data declaration with their full types. The additional generality arises
because the range of a constructor in a GADT is not constrained to be the type
constructor applied to only type variables. For example consider the value level

types:

data Seq:: *0 "> Nat "> %0 where
Snil :: Seq a Z
Scons:: a -> Seq an -> Seq a (S n)

data Degree:: TempUnit “> *0 where
F :: Float -> Degree Fahrenheit
C :: Float -> Degree Celsius
K :: Float -> Degree Kelvin

Note, that instead of ranges like Degree a and Seq a b, where only type vari-
ables like a and b can be used as parameters, the ranges contain sophisticated
instantiations such as Degree Celsius and Seq a (S n). Note that the second
index to Seq (the one of kind Nat) is used to describe an invariant about the
length of the sequence. The constructors of Degree each lift a scalar Float to
a Degree with a different unit. Operations on Degree are easy to define. Note
that in Qmega, (#+) is the infix operator for addition on Floats.

add :: Degree a -> Degree a -> Degree a
add (F n) (F m) = F(n #+ n)
add (C n) (C m) = C(n #+ n)
add (K n) (K m) = K(n #+ n)

An interesting observation is that while the definition for add contains only
three of the possible nine combinations of the constructors for Degree, it is total
function. That is because any of the missing six patterns representing pairs of
arguments, cannot both have the same TempUnit index: a, as declared by the
prototype declaration.

Generic Programming in (2mega 265

Using kinds in this fashion is more expressive than just using phantom types.
For example one might be tempted to use phantom types and write:

data Degree unit = T Float

fah :: Float -> Degree Fahrenheit

fah =T

cel :: Float -> Degree Celsius

cel =T

kel :: Float -> Degree Kelvin

kel =T

add :: Degree a -> Degree a -> Degree a

add (T x) (T y) =T (x #+ y) -— no need for 3 cases

This is strictly less general. First it admits nonsense types like (Degree Bool).
Using new kinds, only Fahrenheit, Celsius, and Kelvin are classified by
TempUnit, so types like Degree Bool are rejected. The kind system plays the
role of a type system for types.

Second, with the GADT approach, one can write functions that do different
things depending on the type of their inputs. For example we can write coercing
operators that take inputs of any units, but always return outputs of a standard
unit (say Kelvin).

plusK :: Degree a -> Degree b -> Degree Kelvin
plusk (K x) (X y) = K(x #+ y)
plusk (C x) (K y) = K(273.0 #+ x #+ y)

For brevity, we have shown here only two of the nine possible cases.

Feature: Type Functions. Kind declarations allow us to introduce new tree-
like structures at the type level. We can use these structures to parameterize
data at the value level as we did with Nat or TempUnit, or we can compute
over these tree-like structures. Such functions are written by pattern matching
equations, in much the same manner one writes functions over data at the value
level. Several useful functions over types defined earlier are:

even :: Nat "> Boolean plus:: Nat > Nat "> Nat
{even Z} = T {plus Z m} =m
{even (S Z2)} = F {plus (S n) m} = S {plus n m}

{even (S (S n))} = {even n}
and:: Boolean "> Boolean "> Boolean
le:: Nat ~> Nat ~> Boolean {and T x} = x
{le Zn} =T {and F x} = F
{le (S8 n) Z} = F
{le (S n) (Sm} = {le n m}

Like functions at the value level, the type functions plus, and, even, and le
are expressed using equations. The function and is a binary function that com-
bines two Booleans. The property even is a unary predicate that distinguishes
odd from even numbers, and the property le is a binary less-than-or-equal-to
predicate. All the type functions are strict total (terminating) functions.

266 T. Sheard

Pattern: Witnesses. GADTSs can be used to witness relational properties be-
tween types. This is because the parameters to types introduced using the GADT
mechanism can play different roles. The natural number argument of the type
constructor Seq (from Section 3) plays a qualitatively different role than type ar-
guments in ordinary ADTs. Cehsider the declaration for a binary tree datatype
in Haskell:
data Tree a = Fork (Tree a) (Tree a) | Node a | Tip

In this declaration the type parameter a is used to indicate that there are sub-
components of Trees that are of type a. In fact, Trees are parametric. Any type
of value can be placed in the “sub component” of type a. The type of the value
placed there is reflected in the Tree’s type. Contrast this with the n in (Seq
a n). Instead, the parameter n is used to stand for an abstract property (the
length of the list represented). When we use a type parameters in this way we
call it a type index [25,28] rather than a type parameter.

We can use index ADTs to define value level data that we can think of
as proofs, or witnesses to type level properties. This is a powerful idea. Consider
the introduction of two new parameterized types Even and LE. Note that these
are ordinary data structures that exist at the value level, but describe properties
at the type level.

data Even:: Nat "> *0 where data Plus:: Nat "> Nat "> Nat "> *0 where
EvenZ:: Even Z PlusZ:: Plus Z m m
EvenSS:: Even n -> Even (S (S n)) PlusS:: Plus nm z -> Plus (S n) m (S z)

data LE:: Nat "> Nat "> *0 where
LeZ:: LE Z n
LeS:: LEnm -> LE (S n) (S m)

These declarations introduce value-level constants (EvenZ, PlusZ, and LeZ) and
constructor functions (EvenSS, PlusS, and LeS). Let’s examine the types of
several values constructed with these constructors. To make it easier to handle
types of kind Nat, in (dmega, we have special syntactic sugar for entering and
displaying them. Z = #0, S Z = #1, S(S Z) = #2, etc. We may also write #(1+x)
for S x, and #(2+x) for S(S x), etc.

EvenZ:: Even #0 LeZ:: LE #0 a
(EvenSS EvenZ):: Even #2 (LeS LeZ):: LE #1 #(1+a)
(EvenSS (EvenSS EvenZ)):: Even #4 (LeS (LeS LeZ)):: LE #2 #(2+a)

pl ::Plus #2 #3 #5
pl = PlusS (PlusS PlusZ)

We write #0 for Z, and #1 for S Z, etc. to emphasize that we should view
LE, Plus and Even as a relationships between natural numbers. The impor-
tant thing to notice is that we may view ordinary values with types LE n m and
Even n as proofs, since the types of all legally constructed values witness only
true statements about n and m. For example we cannot build a term of type

Generic Programming in (2mega 267

Even #1. This is the essence of the Curry-Howard isomorphism. We can view
(EvenSS Even):: Even #2 aseither the statement that EvenSS EvenZ has type
Even #2, or that EvenSS EvenZ is a proof of the property Even #2. All this fol-
lows directly from the introduction of new types with tree-like structure, and
the ability to compute over them.

Pattern: Witness vs. Type Function. The reader may have noticed that
even and Even are two different ways to express the same notion. Either we
write a (Boolean) function at the type level (even), or introduce a witness type
(Even) at the value level. For every m-ary function at the type level, we can
build an (n + 1)-ary witness type. The witness type turns the n-ary function
into an (n + 1)-ary type constructor. Each clause in the function definition is
named by a constructor function in the witness. If the right-hand-side of a clause
has m recursive calls, the constructor function becomes an m-ary constructor.
The right-hand-side of each clause becomes the (n+ 1) argument of the range,
where every recursive call to the function in the right-hand-side, is replaced with
a variable. Each recursive call becomes one of the m arguments. The (n + 1)
argument to these calls is the new variable replacing the corresponding recursive
call in the (n + 1)*" argument of the range. For example: The clause of the
binary function {plus (S n) m} = S {plus n m}, becomes a ternary predicate
Plus (S n) m (S {plus n m}). By replacing the recursive call with z, and making
z be the (n + 1)% parameter to the first argument, we get the type of the unary
constructor PlusS:: Plus nm z -> Plus (S n) m (S z).

Witnesses and type functions express the same ideas, but can be used in very
different ways. Type functions are only useful at compile-time (they’re static) and
their structure cannot be observed (they can only be applied, so we say they are
extensional). Witnesses, on the other hand, are actual data that is manipulated
at run time (they’re dynamic). Their structure can also be observed and taken
apart (we say they're intensional). They are true data. A big difference between
the two ways of representing properties is the computational mechanisms used
to ensure that programs adhere to such properties.

Pattern: Singleton Types. Sometimes it is useful to direct computation at the
type level, by writing functions at the value level. Even though types cannot de-
pend on values directly, this can be simulated by the use of singleton types. The
idea is to build a completely separate isomorphic copy of the type in the value
world, but still retain a connection between the two isomorphic structures. This
connection is maintained by indexing the value-world type with the correspond-
ing type-world kind. This is best understood by example. Consider reflecting
the kind Nat into the value-world by defining the type constructor SNat using a
data declaration.

data SNat:: Nat "> *0 where
Zero:: SNat Z
Succ:: SNat n -> SNat (S n)

three = (Succ (Succ (Succ Zero))):: SNat(S(S(S 2)))

268 T. Sheard

Here, the value constructors of the data declaration for SNat mirror the type
constructors in the kind declaration of Nat. We maintain the connection between
the two isomorphic structures by the use of SNat’s natural number index. This
type index is in one-to-one correspondence with the shape of the value. Thus, the
type index of SNat exactly mirrors its shape. For example, consider the example
three above, and pay particular attention to the structure of the type index,
and the structure of the value with that type.

This kind of relationship between values and types is called a singleton type
because there is only one element of any singleton type. For example only Succ
(Succ Zero) inhabits the type SNat(S (S Z)). It is possible to define a sin-
gleton type for any first order type (of any kind). All Singleton types always
have kinds of the form I ~> *0 where I is the index we are reflecting into the
value world. We sometimes call singleton types representation types. We cannot
over emphasize the importance of the singleton property. Every singleton type
completely characterizes the structure of its single inhabitant, and the structure
of a value in a singleton type completely characterizes its type. Thus we can
compute over a value of a singleton type, and the computation at the value level
can express a property at the type level. By using singleton types we completely
avoid the use of dependent types where types depend on values [20/17]. The cost
associated with this avoidance is the possible duplication of data structures and
functions at several levels.

Pattern: A pun: Nat’. We now define the type Nat’, which is in all ways iso-
morphic to the type SNat. The type Nat’ is also a singleton type representing the
natural numbers, but it relies on an feature of the (2mega type system. In Qmega
(as in Haskell) the name space for values is separate from the name space for types.
Thus it is possible to have the same name stand for two things. One in the value
space, and the other in the type space. The pun is because we use the names S and
Z in both the value and type name spaces. We exploit this ability by writing:

data Nat’:: Nat "> *0 where
Z:: Nat’ Z
S:: Nat’ n -> Nat’ (S n)

The value constructors Z:: Nat’ Z and S:: Nat’ n -> Nat’ (S n) are ordi-
nary values whose types mention the type constructors they pun. The name
space partition, and the relationship between Nat and Nat’ is illustrated below.

“— value name space | type name space —

value | type | kind | sort
| Z :: Nat ikl
| 8 :: Nat “> Nat :: *1
Z :: Nat’ Z : %0 troxl
S :: Nat’ m -> Nat’ (S m) :: *0 tro*1

In Nat’, the singleton relationship between a Nat’ value and its type is empha-
sized even more strongly, as witnessed by the example three’.

three’ = (S(8(S Z))):: Nat’(S(S(S 2)))

Generic Programming in (2mega 269

Here the shape of the value, and the type index appear isomorphic. We further
exploit this pun, by extending the syntactic sugar for writing natural numbers
at the type level (#0, #1, etc.) to their singleton types at the value level. Thus
we may write (#2:: Nat’ #2).

Pattern: Computing Programs and Properties Simultaneously. We can
write programs that compute an indexed value along with a witness that the
value has some additional property. For example, when we add two static length
lists, the resulting list has a length that is related to the lengths of the two input
lists, and we can simultaneously produce a witness to this relationship.

data Plus:: Nat "> Nat "> Nat "> *0 where
PlusZ:: Plus Z mm
PlusS:: Plus nm z -> Plus (S n) m (S z)

appl:: Seq an -> Seq am -> exists p . (Seq a p,Plus n m p)
appl Snil ys = Ex(ys,PlusZ)
appl (Scons x xs) ys = case (appl xs ys) of { Ex(zs,p) -> Ex(Scons x zs,PlusS p) }

The keyword Ex is the “pack” operator of Cardelli and Wegner []. Its
use turns a normal type (Seq a p,Plus n m p) into an existential type
exists p.(Seq a p,Plus n m p). The Q2mega compiler uses a bidirectional type
checking algorithm to propagate the existential type in the signature inwards to
the Ex tagged expressions. This allows it to abstract over the correct existentially
quantified variables.

Pattern: Staging. Qmega supports the staging annotations: brackets:
(LI _ 11), escape ($C _)), and the two staging functions: 1ift::(forall a .
a -> Code a) and run::(forall a . (Code a) -> a) for building and ma-
nipulating code. Qmega uses the Template Haskell [19] conventions for creating
code. Brackets ([| _ 1]) are a quasi-quotation mechanism, and escape ($(_))
escapes from the effects of quasi-quotation. For example.

inc x = x + 1

cla = [l 4 + 3 1]

c2a = [| \ x => x + $cla |]

c3 =[] let £f x =y - 1 vwherey=3x*xin f 4 + 3 |]
cd = [| inc 3]

c6 = [l [I 311 1]

c6=[l \x —>x]

In the examples above, inc is a normal function. The variable cla names a piece
of code with type Code Int. The variable c2a names a piece of code with type
Code(Int -> Int). It is constructed by splicing the code cla into the body of the
lambda abstraction. The variable ¢3 names a piece of code with type Code Int. It
illustrates the ability to define rich pieces of code with embedded let and where

270 T. Sheard

clauses. The variable c4 names a piece of code with type Code Int. It illustrates
that functions defined in earlier stages (inc) can be lifted (or embedded) in code.
The variable c5 names a piece of code with type Code (Code Int). It illustrates
that code can be nested.

The purpose of the staging mechanism is to have finer control over evalua-
tion order, which is exactly what we want to do when removing the interpre-
tive overhead of generic programming. Qmega supports many of the features of

MetaML [18/22].

5 Generic Programming

We now know enough about Qmega to write some generic functions. Generic
programming is nothing more than abstracting over objects rich in structure.
Usually this structure is some internal compiler structure not accessible to the
programmer. Without some sort of reflection mechanism, the language cannot
access this structure. Even with a reflection mechanism, the reflected structure is
usually too complex to capture in a well-typed way. Instead an untyped abstrac-
tion of the internal structure is used. This often has no precise formal connection
to real internal structure. In Qmega, with its rich types, including the use of type
indexes, we can often remedy these objections.

5.1 Datatype Generic Programs

The classic generic programming example is datatype generic programming,
where a single program suffices to define a function over many different
datatypes. When a function is defined over a fixed set of types we call it over-
loaded, when it is defined over all types, we call it generic.

The key to overloaded programs, is defining the overloaded functions over the
structure of types. In order to do this effectively, the values representing the
structure of types should be intimately connected to the actual type structure.
In Omega we can use GADTs to build such a connection.

We will build a representation of types using GADTs and then generate sev-
eral program families by abstracting over the type representation. Our example
is extremely simple, but depends only on the use of GADTs. It makes no use
of Qmega’s other features. In the companion paper in this collection, Generic
Programming, Now!, by Ralf Hinze and Andres Loh, there are many richer ex-
amples that follow exactly this paradigm, which could also be programmed in
Qmega.

To build the connection between types, and their structure we use GADTSs to
define an indexed structure that represents Qmega types. This GADT will have
a type index. This index is the type that being represented.

Our example will represent base types, products, and sum types, but we could
easily extend it to other types. In Qmega the type a+b is like Either a b
in Haskell. Vaules of sum types are created with the constructor functions
L:: a -> (at+b) and R:: b -> (at+b). Note also, that the type Rep is a sin-
gleton type.

Generic Programming in (2mega 271

data Rep:: *0 "> *0 where
Rint:: Rep Int
Rchar:: Rep Char
Runit:: Rep ()
Rpair:: Rep a -> Rep b -> Rep (a,b)
Rsum:: Rep a -> Rep b -> Rep (at+b)

tl :: Rep ((Int,Char)+((),Int))
t1l = Rsum(Rpair Rint Rchar) (Rpair Runit Rint)

Note, in example t1, that the index ((Int,Char)+((),Int)) is isomorphic to
the shape of its value Rsum (Rpair Rint Rchar) (Rpair Runit Rint). Next,
we define an overloaded function to sum up all the integer components of a rich
structure with type: Rep a -> a -> Int.

sumR :: Rep a -> a -> Int
sumR Rint n
sumR (Rpair r s) (x,y) = sumR r x + sumR s y
sumR (Rsum r s) (L x) = sumR r x

sumR (Rsum r s) (R x) = sumR s x

sumR _ x =0

n

As we interpret the shape of the Rep, we recursively descend over sums and
pairs (summing the two components from each part of the pair), components
of type Int are returned, and other base types contribute zero. The overhead
of interpreting the type representation adds considerable cost to computing the
result. Staging the sum function can remove this overhead, and is simply a matter
of placing the staging annotations in the correct places.

sum2 :: Rep a -> Code a -> Code Int
sum2 Rint x = x
sum2 (Rpair x y) z =
[l let (a,b) = $z in $(sum2 x [| a 1) + $(sum2 y [| b 1) |]
sum2 (Rsum r s) x =
[I case $x of
Lm->$(um2r [| m 1)
Rm-> $(sum2 s [| m |]) |]
sum2 _ x = [| 0 |]

B B

sumG:: Rep a -> Code (a -> Int)
sumG x = [| \ w -> $(sum2 x [| w []1) |]

ans3 sumG t1

Note the use of the generated pattern match in the Rpair case to avoid the
duplication of the code z.

The strategy we use in the example above is a common one when staging
a function. Rather than define a function with type Rep a -> Code (a -> Int)
in one go, we do it in two steps. First defining a function (sum2) with type

272 T. Sheard

Rep a -> Code a —> Code Int, and then using this function to build the function
(sumG) with the type we really want. We do this because it is easier to manipulate
code with first-order types. If we built sumG directly we would generate code
with unnecessary explicit beta-redices and eta-expansions. The example ans3
illustrates the residual code.

[l \ bbf ->
case bbf of

(L ebf) ->
let (hbf, ibf) = ebf
in hbf + O

(R jbf) —>
let (mbf, nbf) = jbf
in O + nbf |] : Code (((Int,Char)+((),Int)) -> Int)

Many richer examples of datatype generic polymorphism are illustrated in
the companion paper Generic Programming, Now!. Such examples depend only
upon the GADT mechanism and are programmed in the GHC extensions to
Haskell. These examples could benefit additionally from staging. We now move
to some examples that rely on the richer type mechanisms of Qmega.

5.2 The n-Sum Example

We will build a well-typed generic program that captures the family of programs:

1. \'x > x

2. \'x >\ y > xty

3. \'x >\ y >\ z > xty+z

4. \x > \y->\z>\w->x+tytz+w

First, we define a function at the type level that maps a natural number 7 to
the type of the i*" function in this family.

sumTy :: Nat "> %0
{sunTy Z} = Int
{sunTy (S n)} = Int -> {sumTy n}

For example, the type {sumTy #3} normalizes to the type
Int -> Int -> Int -> Int. With this type function we can now capture the
type of the generic sum over n integers: nsum:: Nat’ n -> {sumTy n}. Which
behaves as:

(nsum #1) = \ x > x
(nsum #2) = \ x > \ y -> x+y
(nsum #3) = \ x > \ 'y => \ z -> x+y+z

We define the n-way sum function in two stages. We write a helper function
nsumAcc, and then write a program nsum which captures the family of functions:

Generic Programming in (2mega 273

nsumAcc :: Nat’ n -> Int -> {sumTy n}
nsumAcc Z x = x
nsumAcc (S n) x = \ y => (nsumhcc n (x+y))

nsum :: Nat’ n -> {sumTy n}
nsum n = nsumAcc n 0

testsum = (nsum #3 1 3 5) == (nsum #2 0 9)

Note how the number of integers nsum can consume depends upon its Nat’
argument. It is truly generic in the sense that it abstracts over objects not in the
vocabulary of most languages. Note also, that type checking this function must
solve a narrowing problem.

expected type Nat’ n — Int — {sumTy n}

equation nsumAcc (S n) x = Ay — (nsumAcc n (x+y))
computed type Nat’ (S a) — Int — Int — {sumTy a}

equalities n = (S a) = Int — {sumTy a} = {sumTy n}

We must show that under the assumption n = (S a), the type Int -> {sunTy a}
is equal to the type {sumTy n}. Substituting for n, we must solve
Int -> {sumTy a} = {sumTy (S a)}. Using the definition of sumTy we get
Int -> {sunTy a} = Int -> {sumTy a}.

This program interprets the structure of its Nat’ argument. It would be well
to stage the function so that this interpretive over head is removed. This is easy
to do using Qmega’s staging annotations. To stage the nsum program we write
the nsum generator nsumG.

nsumG :: Nat’ n -> Code Int -> Code {sumTy n}
nsumG Z x = X
nsumG (S n) x

[l \'y -> $(sumG n [| $x +y 1) |]

sumGen:: Nat’ n -> Code {sumTy n}
sumGen n = nsumG n (lift 0)

This is essentially the nsumAcc program with a few brackets and escapes judi-
cially sprinkled over the program, to force the interpretation to happen in the
first stage, and to produce the residual code. By executing sumGen we obtain the
residual code when the size is #3.

sumGen (S(S(S 2)))

[Nyl ->\Ny3->\y5->0+yl+y3+y5|]
: Code (Int -> Int -> Int -> Int)

Analysis of the Generic Examples. The process followed in this and the
previous example is common to many generic programming exercises. We review
it here.

— First, develop some indexed data structure to capture the details of the prob-
lem. The index captures a semantic property of the generic program. In the

274 T. Sheard

nsum example the indexed data structure is the singleton natural numbers,
and the index is related to the number of arguments. In the datatype generic
example, the index relates the structure (Rep) to the type it represents.

— Second, write a type function(s) that computes the type of the generic result
as a function of the specification structure. In the nsum example, sumTy plays
this role. In the datatype generic sum function the type function was the
identity and was not needed.

— Third, write a function that interprets the specification to produce the result
(nsum and sum?2).

— Fourth, stage the generic function to produce a generic generator (nsumG and
sumG).

5.3 Generic n-Way Zip

In this example we illustrate the use of a type relation (or witness type) to
specify a generic function. Sometimes such a witness type is more useful than a
type function.

Consider the zip function that maps a ternary function over the elements of
three lists. One way to approach this problem was suggested by Fridlender and
Indrika in their paper Do We Need Dependent Types [10]. They develop an n-way
zip that uses only polymorphism rather than indexed or dependent types. Their
approach depends upon the following observation, that n-way zip is nothing
more than repeated list-based application(apply), where a list of functions is
applied to a list of arguments. We illustrate for n = 3.

zip3 £ [1,2,3] [True,False] [’a’,’b’,’c’,’d’] -=>
[f,f,£,f, ...] ‘apply‘ [1,2,3] ‘apply‘ [True,False] ‘apply‘ [’a’,’b’,’c’,’d’] -->
[f 1, £ 2, £ 3] ‘apply‘ [True,False]l ‘apply‘ [’a’,’b’,’c’,’d’] -->
[f 1 True, f 2 False]l ‘apply‘ [’a’,’b’,’c’,’d’] -=>

[f 1 True ’a’, f 2 False ’b’]

apply (f:fs) (x:xs) = (f x) : (apply fs xs)
apply _ _ = [1

The function zip3 first creates an infinite list of the function f, and then iterates
the list-based application function over the three lists. Note how the length of
the shortest of the three lists determines the length of the result. An infinite
list of fs is necessary since the function zip3 cannot know how long its inputs
are without testing them. The approach is to build the iterator as higher-order
ordinals, i.e. functions that behave like zero and successor functions that build
the natural numbers.

zero:: a —-> a
zZero x = X

succ:: ([a]l] -=> b) > [c -> a] > [c] > b
succ n fs xs = n(fs ‘apply‘ xs)

Generic Programming in (2mega 275

zero:: a -> a
(succ zero):: [a -> b] -> [a] -> [b]
(succ(succ zero)):: [a => b -> c] -> [a] -> [b] -> [c]

Note how successive application of succ to previous ordinals construct functions
that use the list-based application strategy. The definition of zip is trivial, first
building the infinite list of functions, and then applying the ordinal to do the
work.

zip:: ([al] -=> b) > a -> b
zip n f = n (repeat f)

There are three problems with this approach. First, the ordinals are functions
and not data structures. Because of this, their structure cannot be observed. This
precludes building a staged implementation, which means there will always be a
layer of interpretation that cannot be removed. Second, this strategy depends in
a crucial way on the use of laziness. The infinite list of functions can only be built
in a lazy language. In a strict language (like ML), the strategy must be severely
modified to test for the maximum length of the n lists. This also adds some
unnecessary overhead. Third, the approach builds n intermediate lists, none of
which are absolutely necessary.

We will attack these problems one at a time. First, we can use GADTSs to
construct the ordinals. Using this approach the ordinals become data structures
that can be observed. Consider the GADT Zip and the types of the first three
ordinals:

data Zip:: *0 "> *0 "> *0 where
Zero :: Zip [a] [al
Succ :: Zip [x] y -> Zip [a -> x] ([a]l -> y)

zero :: Zip [a] [a]
zero = Zero

one :: Zip [a -> b] ([al -> [b])
oned Succ Zero

two:: Zip [a -> b -> ¢] ([a]l -> [b] -> [c])
two = Succ(Succ Zero)

In general the type of the n way map has the type a -> b where the nth ordi-
nal has type Zip [a]l b. We can write these functions following the pattern of
Fridlender and Indrika.

zip :: Zip [x] y > x > ¥y
zip n f = zip’ n (repeat f)
where zip’ :: Zipxy > x >y
zip’ Zero xs = xs
zip’ (Succ n) fs = \ xs -> zip’ n (apply fs xs)

276 T. Sheard

zip:: (a2 => b -> ¢ -> d) -> [a] -> [b] -> [c] -> [d]
zip £ = \ listl -> case listl of
(x : xs) —>
\ list2 -> case list2 of
(y : ys) —>
\ list3 -> case 1list3 of
(z : zs) >fxyz: zip f xs ys zs
0 ->10
O->\N_->10
O->\N_->_->1

Fig. 2. An example n-way zip, for n=3

First, create the infinite list of £s, and then repeatedly apply this list of functions
to the next list of elements. Because the ordinal is a data structure we can easily
stage this function.

zipGen :: Zip [x] y -> Code(x -> y)
zipGen n = [| \ £ -> $(zip’ n [| repeat £ []) |[]
where zip’ :: Zip x y -> Code x -> Code y
zip’ Zero xs = xs
zip’ (Succ n) fs = [| \ xs -> $(zip’ n [| apply $fs xs |1)]

Here the iteration over n becomes plain. For each n the function zip’ unfolds
generating a lambda expression over one of the n lists. For example: zipGen
(Succ (Succ Zero)) generates the following 2mega code:

[l \f->\xs ->\ ys -> Japply (%apply (%repeat f) xs) ys |]

Unfortunately, this code still suffers from the use of laziness, and the creation
of intermediate lists. An alternate approach is illustrated in Figure 2l The 3-ary
zip illustrated is an instance of a generic n-way zip. It should be clear that there
are two iterations going on. The first iteration is over n. For n=3, we see that the
function unfolds into 3 lambdas and 3 case expressions. The second iteration is
over the length of the shortest of the n lists. Note that this iteration begins only
after the n way iteration. Note how this strategy neither depends upon laziness,
nor builds unnecessary intermediate lists.

To type the general n-way zip (rather than the specific 3-way zip) consider
the sequence of terms that appear in the definition of the 3-way zip.

f :: (a=>b->c->4d
(f x) it (b ->c > d)
(fxy) :: (c >4

(fxy=z)::4d

(zip £) :: ([a] —> [b] -> [c] -> [d])
(zip £ xs) :r ([b] -> [c] -> [d])
(zip £ xs ys) i: ([e]l -> [dD)

(zip f xs ys zs):: [d]

Generic Programming in (2mega 277

There is a relationship between the types of the two sequences of terms. Note
that the types of the second sequence can be obtained from the first by applying
the list type constructor to each of the type variables in the types of the first
sequence. This motivates the following witness type, that relates the number n,
and the types of these two sequences.

data Zip’ :: *0 "> *0 "> *0 where
Zero’:: Zip’ a [al
Succ’:: Zip’ b ¢ -> Zip’ (a -> b) ([a] ->)

Like the GADT Zip, the new values of the new GADT Zip’ are isomorphic to
the natural numbers, and Zip’ is a relation between the two sequences of types
given above. By observing the type of several successive values we can visualize
this relationship.

zero’ = Zero’ 1 Zip?’ a [al
one’ Succ’ Zero’ :: Zip’ (a -> b) ([al -> [b])
two’ = Succ’ (Succ’ Zero’) :: Zip’ (a -> b -> ¢) ([a] -> [b] -> [c])

It should be clear, that the type of the n-way zip can be captured by using either
Zip or Zip’

zip:: Zip [a]l b -> a -> b. and

zip:: Zip’ a b -> a -> b.

To define zip using Zip’, we write helper function, help :: Zip’ a b -> a ->
b -> b. The basic idea is captured by the table below.

2f:: (@ ->b ->c)zip f:: [a] -> [b] -> [c] help two’ £ (zip f):: [a] -> [b] -> [c]
1f x:: (b ->c) zip £ xs:: [b] -> [c] help one’ (f x) (zip f xs):: [b]l -> [c]
0f xy:: c zip f xs ys:: [c] help zero’ (f x y) (zip f xs ys):: [c]

As n decreases, the two arguments to help become more saturated, by applying
them to the heads and tails of the n lists. We put this all together below:

zipn = let zip £ = help n f (\ x -> zip f x) in zip
where default:: Zip’ a b -> b

default Zero’ = []

default (Succ’ n) = \ ys -> default n

help :: Zip’ ab ->a ->b ->b
help Zero’ x xs = (x : xs)
help (Succ’ n) f rcall =
(\ ys -> case ys of
(z:zs) -> help n (f z) (rcall zs)
_ => default n)

There are two subtleties. The function default builds a lambda of n-
arguments, that ignores all of them and returns the empty list. This is nec-
essary since the early termination of the mth-list, means we must skip over the
(m + 1)st-list through nth-list, before we return the empty list. The second sub-
tlety is the eta-expansion of map f as the third argument to help. Without this
eta-expansion the definition of map would loop since Qmega is a strict language.
It is easy to stage this function.

278 T. Sheard

zipGen:: Zip’ a b -> Code (a -> b)
zipGen n = [| let zip £ = $(zip’ n [I£f|] [lzip £|]) in map |]
where default:: Zip’ a b -> Code b

default Zero’ = [| [1 []

default (Succ’ n) = [| \ ys -> $(default n) |]

zip’ :: Zip’ a b -> Code a -> Code b -> Code b
zip’ Zero’ x xs = [| $x : $xs |]
zip’ (Succ’ n) f rcall =
[l \ ys -> case ys of
(z:zs) -> $(zip’ n [| $f z |1 [| $rcall zs [|]1)
_ => $(default n) 1]

Because of the staging we no-longer need the eta-expansion of map f. We apply
mapGen to a few ordinals to visualize the results. In the code below we have
alpha-renamed some of the variables in the code that was actually generated to
make the structure more obvious.

zipGen Zero’ -——=>
[l let zip0 x = x : zip0 x in zipO |] : forall a.Code (a -> [al)

zipGen one’ -——=>
[l let zipl £ =
\ xs ->

case xs of
(y : ys) > £y : zipl £ ys
>0
in zipl |] : forall a b.Code ((a -> b) -> [a] -> [b])

zipGen two’ -——-->
[l let zip2 £ =
\ xs ->

case xs of
(e28 : £28) ->
\ ys —>
case ys of
(k28 : 128) -> f e28 k28 : zip2 z27 £28 128
- —> 1
_ >\ n28 > []
in zip2 |] : forall a b c.Code ((a -> b -> ¢) -> [a] -> [b] -> [c])

For n=3, this is exactly the same function which we used as our starting point
in Figure 2l Moreover, we have fixed all three of the problems associated with
the list-based application approach, with code that is only marginally longer.

Analysis of the Witness Based Examples. The witness based approach to
generic programming is common. We review it here.

Generic Programming in (2mega 279

— First, develop some indexed data structure to witness the relationships be-
tween the input and output types of the generic function. The GADTs Zip
and Zip’ played this role.

— Second, write a function that interprets the witness type to produce the
result (the two versions of zip).

— Third, stage the generic function to produce a generic generator (the two
versions of zipGen).

5.4 Using Qmega’s Hierarchy of Levels

Our last example illustrates the utility of abstracting over kinds and other higher
level entities in addition to the normal ability of abstracting over types. In the
companion paper Generic Programming, Now!, kind-indexed families of generic
functions are illustrated. To enable this, separate representations of types for
each kind must be defined. For example, a representation for types with kind:
*0 (TypeS), a representation for types with kind: *0 > *0 (TypeS S), and a
representation for types with kind: *0 “> *0 ~> *0 (TypeS S S).

data TypeS:: *0 "> *0 where
Char:: TypeS Char
Int:: TypeS Int
AppS_S:: TypeS_S phi -> TypeS a -> TypeS (phi a)

data TypeS_S:: (0 "> *0) "> %0 where
List:: TypeS_S []
Tree:: TypeS_S Tree
AppSS_S:: TypeS_S_S phi -> TypeS a -> TypeS_S (phi a)

data TypeS_S_S:: (x0 "> *0 "> *0) "> %0 where
Pair:: TypeS_S_S (,)

An approach with a different representation for types, for types at every dif-
ferent kind, is a work-around at best. It requires multiple new datatypes, where
logically only one is needed, and it requires duplicating the application type
representation at every kind. While sufficient for the examples in the paper
the three representation types are not complete. Type constructors with kind
(x0 > *0) “> *0 and *0 ~> *0 ~> *0 ~> *0, are rare, but not unheard of,
and each would require an additional representation type. In Qmega, only a
single kind-indexed datatype is required.

data Type:: forall (k:: *2) (t::k) . k "> t "> %0 where
Char:: Type *0 Char
Int:: Type *0 Int
App:: forall (i:: *1) (j:: *1) (£f:: i™>j) (x:: i)
Type (i ™> j) £ -> Type i x -> Type j (f x)
List:: Type (x0 "> %0) []
Tree:: Type (*0 > *0) Tree
Pair:: Type (*0 > %0 "> *0) (,)

280 T. Sheard

The representation type Type k t represents a type t classified by kind k. The
type constructor Type is polymorphic-recursively kinded. It is applied at different
kinds in its own definition.

To write a kind-indexed function, we define a type function that computes
over kinds. For example to compute a generic count function we proceed as
follows.

countTy:: forall (k:: *2) (t::k) . k "> t > %0
{countTy *0 a} = a -> Int
{countTy (i "> k) phi} = {countTy i a} -> {countTy k (phi a)}

count:: forall (k:: *1) (t::k) . Type k t -> {countTy k t}

Note that the range of count is a function of the kind that classifies t. This
requires a single function, with one clause for each of the constructors of Type.

count:: forall (k:: *1) (t::k) . Type k t -> {countTy k t}

count Char = const O

count Int = const O

count (App f a) = (count f) (count a) where theorem countTyInjectivel
count List = \ ¢ -> sumlList . maplList ¢

count Tree \ ¢ -> sumTree . mapTree c

count Pair = \ cl c2 (x,y) > cl x +c2y

Typing this function requires a little bit of specialized knowl-
edge. In order to type the (App f a) clause, we must prove
that {countTy _a e} -> {countTy _c (_d e)} is equal to
{countTy _a _b} -> {countTy _c (_d _b)}. Le. we must find bindings
for the existentially quantified variable e that make it true.

This can be proven by assigning the value _b to e, if we realize that countTy is
injective in its first argument. L.e. {countTy a x}={countTy a y} if and only if
x=y. This is the purpose of the theorem countTyInjectivel in the where clause
for the (App f a) case.

The theorem declaration is an important way of directing the type checker.
It uses ordinary terms, with types that can be read logically, as specifcations
for new type checking strategies. In Q2mega, there are currently three types of
theorems. Each is used to direct the type checker to do things it might not
ordinarily do. In the case of countTyInjectivel the type is:

countTyInjectivel:: Kind’ a -> Equal {countTy a x} {countTy a y} -> Equal x y

Logically, this can be read as, If a is a well formed kind, and {countTy a x}
1s equal to {countTy a y}, then x is equal to y. The theorem clause directs
the type checker to try proving x=y as one step in a strategy for proving
{countTy a x}={countTy a y}.

Such a theorem is proved by induction over the structure of the kind k. In
Qmega, this manifests itself as recursive term, representing a proof by induction.

Generic Programming in (2mega 281

prop Kind’:: *1 "> *0 where
Star :: Kind’ *0
Karr :: Kind’ a -> Kind’ b -> Kind’ (a "> b)

countTyInjectivel:: Kind’ a -> Equal {countTy a x} {countTy a y} -> Equal x y
countTyInjectivel Star Eq = Eq
countTyInjectivel (Karr x y) Eq = Eq
where theorem ihl = countTyInjectivel x,
ih2 = countTyInjectivel y

Note, that the proof (i.e. the term that defines countTyInjectivel), uses in-
duction hypotheses, which manifest themselves as calls to countTyInjectivel
on smaller sub terms.

Finally we can define two generic functions size and sum for all types with
kind *0 ~> *0.

size:: Type (*0 "> *0) f -> f a -> Int
size f = count f (const 1)

sum:: Type (x0 "> %0) f -> f Int -> Int
sum f = count f id

6 (Qmega’s Approach to Dependent Types

In a dependently typed program, the type of some terms are dependent on the
values of other terms. In the design of Q2mega, we separate values from types,
so in Qmega we use indexed types instead. For example, reconsider the nsum

family of functions that sums 1, 2, 3, ... n inputs from Section Bl We could
write such function with a dependent type: f :: Pi (n:Natural). Int
-> {sunTy n}

In our hypothetical dependently-typed language:

f :: Pi (n::Natural). Int -> {sumTy n}
f0 x=x
fnx=\y->f (n-1) (x+y)

Note how the type of £ depends on the value of f’s first parameter. This vi-
olates our design decision separating values and types. But by using single-
ton types in Qmega, we defined the nsum function from Section [with type
nsum :: Nat’ n -> Int -> {sumTy n}

Note how the range of nsum is not a function of the value of its first parameter.
Instead it is a function of nsum’s first parameters’ type index, n, which is still a
type. This example illustrates our strategy for writing dependently typed func-
tions. Write functions whose types depend on the type-indexes of their arguments
rather than the values of their arguments.

282 T. Sheard

6.1 Conclusion

Qmega is a language which supports a limited kind of dependent typing, and
supports the types-as-properties paradigm. We separate values from types to
maintain a familiar functional programming style. Singleton types and other
indexed types bridge the gap created by the phase distinction.

The generic programs we have written are ordinary 2mega programs which
abstract over rich values (like Rep, Nat’, Zip, Zip’, and Type). In addition,
the overhead of interpretation of the generic specifications can be completely
removed by staging.

References

1. Antoy, S.: Definitional trees. In: Kirchner, H., Levi, G. (eds.) Algebraic and Logic
Programming. LNCS, vol. 632, pp. 143-157. Springer, Heidelberg (1992)

2. Augustsson, L.: Cayenne — a language with dependent types. ACM SIGPLAN
Notices 34(1), 239-250 (1999)

3. Augustsson, L.: Equality proofs in Cayenne (July 11, 2000), http://www.cs.
chalmers.se/~augustss/cayenne/eqproof . ps

4. Cardelli, L., Wegner, P.: On understanding types, data abstraction and polymor-
phism. ACM Computing Surveys 17(4), 471-522 (1985)

5. Chen, C., Xi, H.: Combining programming with theorem proving. In: ICFP 2005
(2005), http://www.cs.bu.edu/~hwxi/

6. Coquand, C.: Agda is a system for incrementally developing proofs and programs.
Web page describing AGDA: http://www.cs.chalmers.se/~catarina/agda/

7. Coquand, T., Dybjer, P.: Inductive definitions and type theory: an introduction
(preliminary version). In: Thiagarajan, P.S. (ed.) Foundations of Software Tech-
nology and Theoretical Computer Science. LNCS, vol. 830, pp. 60-76. Springer,
Heidelberg (1994)

8. Davies, R.: A refinement-type checker for Standard ML. In: Johnson, M. (ed.)
AMAST 1997. LNCS, vol. 1349, Springer, Heidelberg (1997)

9. Dybjer, P., Setzer, A.: A finite axiomatization of inductive-recursive definitions. In:
Girard, J.-Y. (ed.) TLCA 1999. LNCS, vol. 1581, pp. 129-146. Springer, Heidelberg
(1999)

10. Fridlender, D., Indrika, M.: Do we need dependent types? J. Funct. Program 10(4),
409-415 (2000)

11. Luo, Z., Pollack, R.: LEGO proof development system: User’s manual. Technical
Report ECS-LFCS-92-211, LFCS, Computer Science Dept., University of Edin-
burgh, The King’s Buildings, Edinburgh EH9 3JZ, Updated version (May 1992)

12. McBride, C.: Epigram: Practical programming with dependent types. In:
Notes from the 5th International Summer School on Advanced Func-
tional Programming (August 2004)Available at: http://www.dur.ac.uk/CARG/
epigram/epigram-afpnotes.pdf

13. Nordstrom, B.: The ALF proof editor (March 20, 1996), [ftp://ftp.cs.chalmers.
se/pub/users/ilya/FMC/alfintro.ps.gz

14. Paulson, L.C.: Isabelle: The next 700 theorem provers. In: Odifreddi, P. (ed.) Logic
and Computer Science. Logic and Computer Science, pp. 361-386. Academic Press,
London (1990)

http://www.cs.chalmers.se/$sim $augustss/cayenne/eqproof.ps
http://www.cs.chalmers.se/~augustss/cayenne/eqproof.ps
http://www.cs.bu.edu/~hwxi/
http://www.cs.chalmers.se/~catarina/agda/
protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www.dur.ac.uk/CARG/epigram/epigram-afpnotes.pdf
protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www.dur.ac.uk/CARG/epigram/epigram-afpnotes.pdf
protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ftp://ftp.cs.chalmers.se/pub/users/ilya/FMC/alfintro.ps.gz
protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ftp://ftp.cs.chalmers.se/pub/users/ilya/FMC/alfintro.ps.gz

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Generic Programming in (2mega 283

Jones, S.P.: Special issue: Haskell 98 language and libraries. Journal of Functional
Programming 13 (January 2003)

Pfenning, F., Schiirmann, C.: System description: Twelf — A meta-logical frame-
work for deductive systems. In: Ganzinger, H. (ed.) Automated Deduction - CADE-
16. LNCS (LNAI), vol. 1632, pp. 202-206. Springer, Heidelberg (1999)

Shao, Z., Saha, B., Trifonov, V., Papaspyrou, N.: A type system for certified bina-
ries. ACM SIGPLAN Notices 37(1), 217-232 (2002)

Sheard, T.: Using MetaML: A staged programming language. In: Swierstra, S.D.,
Oliveira, J.N. (eds.) AFP 1998. LNCS, vol. 1608, pp. 207-239. Springer, Heidelberg
(1999)

Sheard, T., Peyton-Jones, S.: Template meta-programming for Haskell. In: Proc.
of the workshop on Haskell, pp. 1-16. ACM Press, New York (2002)

Stone, C.A., Harper, R.: Deciding type equivalence in a language with singleton
kinds. In: Conference Record of POPL’00: The 27th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Boston, Massachusetts, pp.
214-227 (2000)

Stump, A.: Imperative LF meta-programming. In: Logical Frameworks and
Meta-Languages workshop (July 2004), Available at: http://cs-www.cs.yale.
edu/homes/carsten/1fm04/

Taha, W., Sheard, T.: MetaML: Multi-stage programming with explicit annota-
tions. Theoretical Computer Science 248(1-2) (2000)

The Coq Development Team. The Coq Proof Assistant Reference Manual, Version
7.4. INRIA (2003), http://pauillac.inria.fr/cog/doc/main.html

Westbrook, E., Stump, A.; Wehrman, I.: A language-based approach to functionally
correct inperative programming. Technical report, Washington University in St.
Louis, (2005), Available at: http://cl.cse.wustl.edu/

Xi, H.: Dependent Types in Practical Programming. PhD thesis, Carnegie Mellon
University (1997)

Xi, H.: Applied type systems. In: Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES
2003. LNCS, vol. 3085, pp. 394-408. Springer, Heidelberg (2004)

Xi, H., Pfenning, F.: Eliminating array bound checking through dependent types.
ACM SIGPLAN Notices 33(5), 249-257 (1998)

Xi, H., Pfenning, F.: Dependent types in practical programming. In: ACM (ed.)
POPL ’99. Proceedings of the 26th ACM SIGPLAN-SIGACT on Principles of
programming languages, ACM SIGPLAN Notices, New York, NY, USA, January
20-22, 1999, pp. 214-227. ACM Press, New York (1999)

A Inductively Sequential Functions

We restrict the form of function definitions at the type level to be inductively se-
quential [I]. This ensures a sound and complete narrowing strategy for answering
type- checking time questions. The class of inductively sequential functions is a
large one, in fact every Haskell function has an inductively sequential definition.
The inductively sequential restriction affects the form of the equations, and not
the functions that can be expressed. Informally, a function definition is inductively
sequential if all its clauses are non-overlapping. For example the definition of zip1
is not-inductively sequential, but the equivalent program zip?2 is.

protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update http://cs-www.cs.yale.edu/homes/carsten/lfm04/
protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://cs-www.cs.yale.edu/homes/carsten/lfm04/
http://pauillac.inria.fr/coq/doc/main.html
http://cl.cse.wustl.edu/

284 T. Sheard

zipl (x:xs) (y:ys) (x,y): (zipl xs ys)

zipl xs ys = []

zip2 (x:xs) (y:ys) = (x,y): (zip2 xs ys)
zip2 (x:xs) [] =0
zip2 [] ys (1

The definition for zip1 is not inductively sequential, since its two clauses
overlap. In general any non-inductively sequential definition can be turned into
an inductively sequential definition by duplicating some of its clauses, instanti-
ating variable patterns with constructor based patterns. This will make the new
clauses non-overlapping. We do not think this burden is too much of a burden
to pay, since it is applied only to functions at the type level, and it supports
sound and complete narrowing strategies. In addition to the inductively sequen-
tial form required for type functions, 2mega assumes that each type function is
a total terminating function. This assumption is not currently enforced, and it
is up to the programmer to ensure that this is the case.

Revealing the X /O Impedance Mismatch
(Changing Lead into Gold)

Ralf Lammel and Erik Meijer

Microsoft Corp., Data Programmability Team, Redmond, USA

Abstract. We take the term X/O impedance mismatch to describe the
difficulty of the OO paradigm to accommodate XML processing by means
of recasting it to typed OO programming. In particular, given XML types
(say, XML schemas), it is notoriously difficult to map them automatically
to object types (say, object models) that (i) reasonably compare to native
object types typically devised by OO developers; (ii) fully preserve the
intent of the original XML types; (iii) fully support round-tripping of
arbitrary, valid XML data; and (iv) provide a general and convenient
programming model for XML data hosted by objects.

We reveal the X/O impedance mismatch in particular detail. That is,
we survey the relevant differences between XML and objects in terms of
their data models and their type systems. In this process, we systemati-
cally record and assess X-to-O mapping options. Our illustrations employ
XSD (1.0) as the XML-schema language of choice and C# (1.0-3.0) as
the bound of OO language expressiveness.

1 Introduction

XML is ubiquitous in today’s application development, which is otherwise biased
towards the OO paradigm. XML data needs to be regularly produced or con-
sumed by (OO) applications. Such need arises for the request/response tiers of
WebServices, and the data storage tiers of many applications, as well as the im-
port/export tiers of applications in ‘standardized’ industries. A very OO-biased
developer (as opposed to an XML aficionado) expects to be able to exercise all
these scenarios on the grounds of the familiar OO paradigm while taking ad-
vantage of a domain-specific object model tailored to the XML data at hand —
without the need to deal with XML intimately. The so-called X/O Impedance
Mismatch challenges this expectation.

1.1 What Is the X/O Impedance Mismatch Anyway?

Quoting Wikipedi, “‘Impedance mismatch’ is derived from the usage of im-
pedance as a measurement of the ability of one system to efficiently accommo-
date the output (energy, information, etc.) of another. [...] Although the term
originated in the field of electrical engineering, it has been generalized and used
as a term of art in systems analysis, electronics, computer science, informatics,

'Thttp://en.wikipedia.org/wiki/Impedance mismatch)captured on9 January, 2007.

R. Backhouse et al. (Eds.): Datatype-Generic Programming 2006, LNCS 4719, pp. 285 2007.
© Springer-Verlag Berlin Heidelberg 2007

http://en.wikipedia.org/wiki/Impedance_mismatch

286 R. Lammel and E. Meijer

and physics.” In particular, the term is also used “to refer to the difficulties
encountered when attempting to connect two systems which have very different
conceptual bases” .

In the case of the X/O Impedance Mismatch, we are talking about the “sys-
tems” of XML and objects with their data models, programming models and
type systems as conceptual bases. “Connecting” XML and objects is best called
X /O mapping, also known as XML-data binding [TOIBSBISTII]. In particular,
the X/0O Impedance Mismatch appears to be associated with canonical XML-to-
object type-based mappings (abbreviated as X-to-O mappings from here on). Such
a mapping is meant to automatically derive object types (say, object models)
from given XML types (say, XML schemas) in a canonical manner. The qualifier
‘canonical’ emphasizes that the mapping is ‘generic’ as opposed to ‘problem-
specific’, (or ‘programmatic’, or ‘user-defined’).

We take the term X/O Impedance Mismatch to refer to the difficulty of de-
vising a (canonical) X-to-O mapping such that the resulting, schema-derived
object types (i) reasonably compare to native object types typically devised by
OO developers; (ii) fully preserve the intent of the original XML types; (iii)
fully support round-tripping of arbitrary, valid XML data; and (iv) provide a
general and convenient programming model for XML data hosted by objects.
We contend that our ‘definition’ essentially subsumes the characterizations that
have been suggested elsewhere [42J58/37I62I6TITT] — except that we focus on the
X-to-0 direction of mapping; we also focus on canonical mappings. Our hypoth-
esis is here that the mastery of canonical X-to-O mappings is the key foundation
for any other form of mechanical X/O mappings. (We will elaborate on this
hypothesis.) Admittedly, ontological aspects are not covered by our definition.

1.2 An Illustrative X-to-O Mapping Sample

Let us model simple arithmetic expressions. In XSD, we designate an element
declaration Exp to expressions. Its content is of a complex type. We consider
two expression forms (hence the <choice>): an int constant and a binary add
expression. Thus:

<xs:element name="Exp">
<xs:complexType>
<xs:choice>
<xs:element name="Const” type="xs:int" />
<xs:element name="Add" >
<xs:complexType>
<xs:sequence>
<xs:element ref="Exp”/>
<xs:element ref="Exp”/>
< /xs:sequence>
< /xs:complexType>
< /xs:element>
< /xs:choice>
< /xs:complexType>
< /xs:element>

Revealing the X/O Impedance Mismatch 287

For comparison, in BNF notation:
Exp :=Int | Exp “+” Exp
For another comparison, in the notation of the Haskell programming language:
data Exp = Const Int | Add Exp Exp

X-t0-O mappings may largely differ with regard to the assumed mapping rules.
In this paper, we often use the xsd.exe tool of the .NET platform as a means
to gather data points for ‘mainstream’ X-to-O mappings. For the given XML
schema, we get the following C# classes]

// Generated by the zsd.exe tool

public class Exp

{

public object Item;

}

public class ExpAdd
{

public Exp Exp;
public Exp Expl;

}

We do not attempt to explain this result here, but it is clear that these schema-
derived classes do not compare very well to the object model that an OO devel-
oper would typically come up with. For comparison, one reasonable design for
expression forms would be to organize the forms in an inheritance hierarchy and
to label fields for subexpressions suggestively. Thus:

// Devised by an OO developer

public abstract class Exp {}
public class Const : Exp { public int Value; }
public class Add : Exp { public Exp Left, Right; }

Looking back at the automatic mapping result, one should note that we are not
necessarily facing a particular defect of a specific mapping tool. (For instance,
the tool can hardly come up with reasonable labels, like Left and Right, without

2 A note on the xsd.exe tool: whenever we show classes generated by the tool, we
omit all generated custom attributes (‘annotations’ in Java terminology) that are
meant to guide the de-/serialization framework. We also hide the ‘partial class status’
that makes the generated classes amenable to compile-time extensions. Finally, for
conciseness, we use an option that prefers plain, public fields over properties (i.e.,
getter/setter methods) with private fields.

288 R. Lammel and E. Meijer

help.) The reader is invited to try out this example with any other mapping
tool, be it an implementation of the JAXB 2.0 architecture for X/O mappings
(say, XML-data binding) in the Java platform [54]. Some tools may perform
better than others for any specific pattern — based on subjective judgment,
while also trading off simplicity, programming convenience, performance, and
other factors. We contend that the impedance between the conceptual bases of
XML and objects suggests that any mapping needs to improvise (unless Al gets
involved or humans intervene).

1.3 Dimensions of the X/O Impedance Mismatch

There is the conceptual impedance between XML and objects:

— The data models of XML and objects differ considerably, e.g.:
e XML is based on parented trees; OO is based on non-parented graphs
instead.
e XML (but not OO) covers the concept of mized content (interim text).
e OO (but not XML) relies on unambiguous selectors for subcomponents.
e XML assumes a rich query language; no such language is ‘native’ in OO.
— The type systems of XML and objects differ considerably, e.g.:
e (Classes aggregate members; XML leverages regular expression types in-
stead.
e OO-based data models use ‘flat’ classes; XML types use nested scopes.
o XML relies on several forms of type abstractions; OO focuses on classes.
e XML validation does not fully align with static typing for object models.

One may want to emphasize that XML and objects also differ considerably with
regard to their programming models. Most notably, OO programming assumes
the use of abstract data types and encapsulation. In contrast, XML processing
uses ‘concrete’ XML languages (concrete data types without attached behavior)
on which to devise ‘functions’ for queries and transformations. However, OO
programming can also switch to the view of ‘objects as public data containers’.
So we contend that the dimension of programming models is less distressing than
the ones of data models and type systems. (In fact, OO programming capabilities
may add value to ‘classic’ XML processing.)
X-t0-O mapping is also challenged by some subordinated dimensions:

— XML is idiosyncratic, e.g.:
e How to map XML’s element/attribute distinction to objects?
e How to maintain XML’s processing instructions in objects?
e How to map XML’s complicated namespaces to objects?
— The prominent XML type system, XSD, is idiosyncratic, e.g.
e XSD’s counterpart for regular expression operators is non-compositional.
e Element substitutability requires extra, auxiliary type definitions.
e There is no general way of hiding global schema components.

3 An illustration of XSD’s idiosyncrasies: http://www.w3.org/2002/ws/databinding/issues/37/

http://www.w3.org/2002/ws/databinding/issues/37/

Revealing the X/O Impedance Mismatch 289

— Mainstream OO languages lack desirable expressiveness, e.g.:
e Object construction over nested types is inconvenient.
e Non-nullable types are not yet generally available.
e Choices (type-indexed sums) are not supported.
— XSD'’s verbosity may imply that one cannot see the tree for the forest [

Finally, a noteworthy dimension of the X/O Impedance Mismatch is the relative
obscurity of the ‘X/O mapping problem’ itself. One can often find the expecta-
tion that an X/O mapping is supposed to relate an XML schema and an object
model where both are given. When this general problem statement is chosen,
then additional challenges are implied such as the potential need for a declarative
mapping formalism, or the definite need for an ontological level of the mapping.
For simplicity, we restrict ourselves to canonical mappings, thereby suggesting
an obvious direction for future work on the X/O Impedance Mismatch.

1.4 The Ambition: Survey X /O Differences

There exist many views on the X/O Impedance Mismatch and X-to-O mapping;:
Is the mismatch perhaps overrated? Should we just be fine with DOM-like XML
programming? Should we add some extras to DOM? Which extras? Should we
disband the so-called ‘schema first’ model, thereby making X-to-O object map-
ping irrelevant? And so on. We do not stake any of these views (in this paper).
Instead, we dive deep into the (contrived or overrated or real) X/O Impedance
Mismatch. The paper’s goal is to provide the most comprehensive discussion (to
date) of the differences between the data models and type systems of XML and ob-
jects. The idea is that such a survey can be used by practitioners and researchers
who want to understand the mismatch and contribute to its further reconciliation
in whatever way they see fit (up to the point to abandon XML entirely). The X/O
Impedance Mismatch has been discussed elsewhere [A2IE8IB7I62I6TIIT7], but the
present paper is the first to systematically collect and assess the most obvious
(and some of the less obvious) X-to-O mapping options.

1.5 The Setup: Map XSD to C#

We expect the reader to be versed in the OO paradigm and to be fluent in a
statically typed OO language such as Java, Eiffel or C#. All illustrative mapping
results are presented as C# fragments, but a very similar development would be
possible for Java 1.5. We will mostly suffice with C# 2.0, but use the emerging
C# 3.0 language [45l46] in a few places. We will explain C# specialties as we
encounter them. XSD (XML Schema 1.0 [67]) is our schema language of choice.
As of writing, XSD is by far the most widely used schema language, and it is
very expressive (compared to DTD [68] or RELAX NG [49]). Our discussion of
differences in the dimension of data models is largely independent of the choice
of XSD — except that we need some schema notation for our samples. Our

4 An illustration of XSD’s verbosity: http://www.charlespetzold.com/etc/CSAML.html

http://www.charlespetzold.com/etc/CSAML.html

290 R. Lammel and E. Meijer

discussion of differences in the dimension of type systems focuses on issues that
are likely to hold for any ‘comprehensive’ schema languageﬁ In so far that we
touch upon some idiosyncrasies of XSD, the paper is somewhat specific to XSD.
We do not expect the reader to be familiar with XSD, but we do expect some
prior exposition to grammar-like formalisms and to XML processing of some
kind (DOM, XSLT, XQuery). We will explain XSD specialties as we encounter
them.

2 Background

Before we dive into the X-to-O mapping topic, let us establish additional con-
text. In particular, let us organize possible mitigation strategies for the X/O
Impedance Mismatch. Also, let us devise a simple programming problem that
we can use for a discussion of different kinds of OO /XML programming cocktails.
Ultimately, we identify desirable properties of X-to-O mappings.

2.1 Reconciliation of the X/O Impedance Mismatch

The mitigation strategies are listed in no particular order.

1. Give up on the idea of X-to-O mapping, operate on untyped, DOM-like XML
trees and reserve the role of XML schemas for validation. There are indeed
proponents for this position [37]. We have argued elsewhere [33] that this
position may potentially ‘throw out the baby with the bath water’. If one
gives up on the idea of X-to-O mapping, as proposed, then schemas are
not leveraged, in any way, to improve developer productivity by means of
static typing. Also, the developer deals with XML intimately, which is not
appreciated by OO-biased developers.

2. Improve the aforementioned option by leveraging XML schemas for the de-
sign experience: The development of VB9.0 [40] adopts this strategy. That
is, schema-based IntelliSense (say, IDE support for tool tips) is under way
such that it helps the programmer to guide queries over XML trees based
on designated XML-member syntax and the construction of XML literals.
No X-to-O mapping is performed. The developer still deals with XML inti-
mately (just as in the case of DOM), but ‘intelliSensial’ XML types provide
a design experience that compares to schema-derived object types (and the
associated, conservative IntelliSense).

3. Require an expressive OO language: One may attempt to identify general
language expressiveness (without committing to the idiosyncrasies of XML
or XSD) that would simplify the X/O mapping effort. (Such expressiveness

5 In particular, we have checked that most issues would also apply to RELAX NG, even
though RELAX NG is sometimes considered a simpler schema language than XSD.
For instance, the mere absence of substitution constructs in RELAX NG does not
imply that mapping is simplified; instead it implies that substitution relationships
must be discovered on the grounds of the assumed use of ‘design patterns’ [60].

Revealing the X/O Impedance Mismatch 291

may also imply corresponding extensions of the underlying virtual machine.)
For instance, the combination of generics, functional OO programming and
language-integrated queries may alleviate the impedance [33]. Regular ex-
pression types (and potentially pattern matching on such types) [22] may
improve static typing for schema-derived object models. For instance, the
C+#t-like research language Cw [42J4716] comprises an extended type system
to cover essentially the EBNF-part of XSD.

. Create a language cocktail such that typed XML is deeply embedded into
(amalgamated with) an OO language: The development of XJ [26/25]9I28]
adopts this strategy. That is, XJ amalgamates the Java and XSD type sys-
tems; XML and XPath are embedded into Java and its type system; XML
trees are represented as DOM trees at runtime. Other work on embedding
includes XACT [30], Xtatic [2TI20] and Cw. The Cw language does not opt
for a full deep embedding of typed XML, but it covers the type-checked
construction of XML trees on the grounds of a syntactical translation from
XML literals to object construction.

. Devise a best-effort mapping: one can take the position that the mismatch
is overrated [61], and devise an informed and matured mapping, while ac-
cepting that some problems remain. For instance, the dreaded problem of
preserving XML comments and mixed content goes away once we are will-
ing to use DOM-like objects for the state part of the schema-derived object

model [55I5133].

. Profile the use of XML schemas; assuming that the profiled subset can be
mapped in a satisfactory manner: as of writing, there is a W3C Working
Group for ‘XML Schema Patterns for Databinding’, which classifies XSD
constructs in a way that could be interpreted as a profile [I7] — even though
the work is primarily meant to capture the degree of XSD support by actual
X-to-O mapping technologies.

. Assume that X-to-O mapping cannot be automated in a satisfactory man-
ner and engage in programmatic mappings: hence an object model with
de- /serialization functionality (to act as bridge between XML and objects)
would be hand-crafted. The programmatic mapping may also be defined
with the help of an (interactive) mapping tool. A less extreme instance of
this strategy is the provision of a canonical X-to-O mapping technology with
rich customization capabilities.

. Disband the ‘schema first’ model; proclaim the ‘code first’ model: suitable
object models would define the de-/serializable data structures for interop-
erable applications. XML schemas may be still used in describing the data
interchange format, such as in the case of WCF’s data contracts for .NET
types [47]. In an extreme case, XML, as such, may be disbanded for the
on-wire data interchange format, such as in the case of JSON [29].

. Surrender and stay with a more XML-centric language: Typically, this would
imply the use of languages such as XSLT and XQuery. One may still hope to
interoperate with OO applications on the grounds of an appropriate foreign-
language interface or simple exchange formats.

292 R. Lammel and E. Meijer

<orders>
<order id="47" zip="98052">
<item id="23">
<price>42< /price>
<quantity>2</quantity>
< /item>
<item id="32">
<price>33</price>
<quantity>3</quantity>
< /item>
< /order>
<!—— ... more orders elided ... ——>
< Jorders>

Fig. 1. An XML document with a batch of purchase orders

10. Use functional instead of OO programming: The type systems of languages
like F#, Haskell or SML with their support for algebraic data types, make
it relatively easy to represent content models. Also, functional programming
is generally convenient for modeling XML-like queries and transformations.
For instance, these capabilities are demonstrated by existing X/O mapping
technologies for Haskell [TTI2]. One may still hope to interoperate with OO
applications.

2.2 0O Programming on XML Data with DOM and Co.

X-to-O mappings deliver ‘domain-specific’ object models (for purchase orders,
health-care workflows, configuration files) for OO programming on XML data.
Most obviously, the domain-specific object model is meant to enable static typ-
ing, but, generally, the use of a domain-specific object model implies that the var-
ious, known capabilities of OO programming can be leveraged for XML process-
ing. For instance, XML processing functionality can be expressed by means of
(potentially virtual) methods to be attached to the schema-derived object model.
Also, XML-processing code can be debugged in a type-aware manner.

Before we engage in typed XML processing based on schema-derived object
models, we will illustrate ‘untyped’ XML processing, using generic, DOM-like ob-
jects. This makes it easy to pronounce the potential benefits of X-to-O mapping.

A Running Example
Consider the following problem:

Total price times quantity for all items of a batch of purchase orders.

Revealing the X/O Impedance Mismatch

DOM/XPath style using the System.Xml namespace

static double GetTotalByZip(XmlIDocument d, int zip)
{
var total = 0.0;
var query = string.Format(”orders/order[@zip={0}]/item”, zip);
foreach (XmlElement x in d.SelectNodes(query)) {
var price = Double.Parse(x.SelectSingleNode(" price”). InnerText);
var quantity = Int32.Parse(x.SelectSingleNode (" quantity”).InnerText);
total -+= price % quantity;
}

return total ;

}

System.Xml.Linq combined in imperative mode
public static double GetTotalByZip(XElement os, int zip)

{
var total = 0.0;
foreach (var o in os.Elements(”order”))
if ((int)o. Attribute ("zip”) == zip)
foreach (var i in o.Elements(”item”))
total += (double)i.Element(”price”) = (int)i.Element("quantity”);
return total ;

}

System.Xml.Lingq combined with LINQ syntax

public static double GetTotalByZip(XElement os, int zip)
{
return (from o in os.Elements(”order”)
from i in o.Elements(”item”)
where (int)o. Attribute ("zip”) == zip

select ((double)i.Element(”price”) * (int)i.Element("quantity”))

)-Sum();

Fig. 2. Compute the total for orders with a given zip code

293

Fig. [shows illustrative XML data. For the sake of a slightly more interesting
example, let us assume that the total should only comprise orders with a specific
zip code. Fig. Blimplements the functionality. We exercise different programming

styles for the reader’s convenience

5 A note on C#: throughout the paper, we tend to use var style variable declarations,
as in var total = ..., as opposed to double total = ..., thereby relying on type inference

of C# 3.0.

294 R. Lammel and E. Meijer

— DOM/XPath style using the System.Xml namespace — The relevant orders
are characterized by an XPath expression that is represented as a string value
and interpreted by SelectNodes. In particular, the XPath expression comprises
a predicate to filter out the relevant orders on the basis of the zip attribute.
The resulting node set of orders is processed in a for-each loop. Price and
quantity are (laboriously) extracted from the relevant children of each order.

— System.Xml.Ling in imperative mode — We use LINQ to XML — a sim-
plified XML programming API [44I39]. The child axis of XPath is replaced
by the API member Elements(...). The test for the zip code becomes a normal
conditional in the scope of a for-each loop. The LINQ to XML API provides
convenient casts to access an element’s or an attribute’s content (say, value).

— System.Xml.Ling combined with LINQ syntax — We switch to functional
programming style based on LINQ’s [46] language-integrated syntax for
FLWOR/SQL-like queries. That is, we aggregate the total by a query ez-
pression; the clauses of a LINQ expression are reminiscent of list processing
in higher-order functional programming (using map, filter and reduce)

DOM-like programming suffers from two shortcomings. First, the XML-processing
code is not type-checked with regard to the content model for purchase orders —
assuming that such a content model exists. Second, the XML-processing code deals
with XML intimately; it does not resemble OO programming style — even though
the problem at hand is conceptually not tied to XML. These are the main issues
that X/O mapping is supposed to address.

2.3 OO Programming on XML Data with ‘Schema First’

We want to encode the functionality for totaling purchase orders at the level of a
designated object model. Let us assume that a ‘standardization body’ has readily
published an XML schema that describes the structure of purchase orders; cf.
Fig. Bl Hence, the XML schema serves as the primary data model from which
to derive an object model, if needed. Thus, we face a ‘schema first’ scenario as
opposed to a ‘code first’ scenario.

The simple schema at hand can be mapped to an object model as follows:

— Root element declarations are mapped to classes.

— Root element names are mapped to class names.

Local element declarations in an XSD <sequence> are mapped to fields.
Local element names are mapped to field names.

Local element types are mapped to field typesﬁ

7 A note on LINQ syntax: the expression form from z in [select y denotes the compu-
tation of a new list I’ from the given list [such that each element x of | is mapped
to an element y of I’ (where x is a variable and y is an expression that may refer
to x). One can add where clauses so as to filter the list [. There are also means for
grouping and ordering. One can cascade from clauses and nest LINQ queries.

8 A note on XSD: We use the term element type to refer to the type attribute of an
element declaration, if present, or to the anonymous type of an element declaration,
otherwise.

Revealing the X/O Impedance Mismatch 295

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema”>

<xs:element name="orders">
<xs:complexType>
<xs:sequence>
<xs:element ref="order” minOccurs="0" maxOccurs="unbounded” />
< /xs:sequence>
< /xs:complexType>
< /xs:element>

<xs:element name="order”>
<xs:complexType>
<xs:sequence>
<xs:element ref="item” maxOccurs="unbounded” />
< /xs:sequence>
<xs: attribute name="id" type="xs:string” use="required” />
<xs: attribute name="zip" type="xs:int" use="required” />
< /xs:complexType>
< /xs:element>

<xs:element name="item” >
<xs:complexType>
<xs:sequence>
<xs:element name="price” type="xs:double” />
<xs:element name="quantity” type="xs:int" />
< /xs:sequence>
<xs: attribute name="id" type="xs:string” use="required” />
< /xs:complexType>
< /xs:element>

< /xs:schema>

Fig. 3. An XML schema for batches of purchase orders

(The explored simple types xs: string, xs:int and xs:double have straightforward coun-
terparts in the .NET/C# type system.) Fig. ll shows the mapping result, when
the xsd.exe tool is used. Fig. Bl shows the typed encoding for totaling purchase
orders; see Fig. 2l again for the untyped encoding. Clearly, the typed encoding is
type-checked and liberated from XML idiosyncrasies. In addition, the typed ver-
sion is also considerably more concise because invocations of generic DOM-like API
members are replaced by direct OO member access to objects for purchase orders.

The untyped approach of the previous subsection assumes that the XML data
is held in memory based on a generic object type for XML trees. In contrast, the
typed approach in the present subsection assumes that instances of schema-derived

296 R. Lammel and E. Meijer

public class orders {
public order[] order;

} public class order {
public item[] item;
public string id;
public int zip;

} public class item {
public double price;
public int quantity;
public string id;

Fig. 4. A schema-derived object model for purchase orders

public static double GetTotalByZip(orders os, int zip) {
return (from o in os.order
from i in o.item

where o.zip == zip
select i.price * i.quantity
)-Sum();

Fig. 5. OO programming on XML data with ‘schema first’

object types are somehow populated with XML data. Typically, population is
based on de-serialization. (In the other direction, we say that objects are serial-
ized to XML. Elsewhere, the terms unmarshalling and marshalling are used.) As
an illustration, the following code demonstrates de-serialization based on .NET’s
System.Xml.Serialization namespace; the code reads XML data into a new object
of type orders before it invokes the computation of GetTotalByZip:

var serializer = new XmlSerializer(typeof(orders));
var reader = XmlReader.Create(xmlFile);
var ords = (orders) serializer . Deserialize (reader);

Console.WriteLine(GetTotalByZip(ords,98052));

2.4 Plain Objects vs. XML Objects

The most tempting way of thinking of schema-derived object models is indeed to
anticipate ‘plain objects’ based on classes with just ‘plain fields’, as exemplified
by the object model in Fig. @ However, there is another option: the schema-
derived object model may serve as an abstract data type for typed XML access,
while hiding the particular XML-data representation. We also use the term ‘XML

Revealing the X/O Impedance Mismatch 297

public class orders : XElement

public orders() : base(”orders”) { }
public IEnumerable<order> order { get { return Elements(”order”).Of Type<order>(); } }

public class order : XElement
public order() : base(”order”) { }
public |Enumerable<item> item { get { return Elements("item”).OfType<item>(); } }
public string id { get { return (string) Attribute ("id"”); } }
public int zip { get { return (int)Attribute ("zip”); } }

public class item : XElement

public item() : base(”item”) { }

public double price { get { return (double)Element("price”); } }
public int quantity { get { return (int)Element(”quantity”); } }
public string id { get { return (string) Attribute ("id"); } }

}

Fig. 6. XML objects for purchase orders (read only)

objects’ [33] in this case. The XML data may be stored in a database or in an
object for an untyped XML tree, while the XML objects merely define a typed
view on the XML data.

The term ‘view’ is used in a similar manner in the database domain [424], XPath
and XSLT processing [50] or functional programming [TO/T2J48]. In our case, the in-
ternal state of an object is meant to account for a precise (high-fidelity) represen-
tation, whereas the interface is tailored to observations (and updates) prescribed
by the schema. Throughout the paper, we will mention trade-offs regarding the
options ‘plain objects vs. XML objects’; we refer to [33] for a related discussion.

Fig. [0l illustrates an instance of the notion of XML objects for our running
example. That is, we use the LINQ to XML API as an ‘XML store’ while we
define an object model to provide typed access properties, which are implemented
in terms of untyped API idioms[The XML ob ject types are defined as subclasses
of XElement — LINQ to XML’s generic type for XML trees[1 (Clearly, there are

9 A note on C#: We use the language concept of a property, i.e., data access through
getters and setters. (In the figure, we only define getters.) That is, properties are
OO members that facilitate abstraction and information hiding for the state part
of objects. Properties may comprise a getter for read access and a setter for write
access. Intuitively, properties can be used like fields. In particular, setters may appear
in the position of ‘left values’, and getters in the position of ‘right values’. In a
language without properties, one encodes getters and setters as methods using a
name convention such as getPrice and setPrice.

10 The getter implementations invoke the generic members of the LINQ to XML API
(i.e., Element, Elements and Attribute) and perform casts for simple-typed content in the
same way as the untyped XML processing code. In the case of the compound (and
repeating) subtrees, LINQ’s type-based filter method OfType<...> is put to work so as
to ‘downcast’ LINQ to XML’s tree type XElement to the schema-derived object types
order and item.

298 R. Lammel and E. Meijer

[DataContract]
public class orders

[DataMember] public order [| order;

[DataContract]
public class order

{

[DataMember] public string id;
[DataMember] public int zip;
[DataMember] public item[] item;

}

[DataContract]
public class item

[DataMember] public string id;
[DataMember] public double price;
[DataMember] public int quantity;

}

Fig. 7. An object model with declarations for a canonical XML representation

implementation options other than making XElement the base class of schema-
derived object types.) The ‘typed’ interface provided by the XML objects is
essentially the same as the one provided by the earlier plain objects — as far
as typed read access is concerned. (Read access is based on ‘getters’ and the
generic type IEnumerable for read-only lists. We omit typed setters for brevity; they
are more complicated and not needed for the query in the running example.)

2.5 Object Serialization Based on ‘Code First’

The X-to-O direction of mapping is associated with ‘schema first’. Hence, the
O-to-X direction of mapping is associated with ‘code first’. In a ‘code first’
scenario, the OO developer devises an object model as the primary data model.
A corresponding XML schema may be again derived in a canonical or in a
problem-specific manner. The canonical option is prevalent because the routine
purpose of O-to-X mappings is actually ‘object serialization’. In such a case,
the derived schema serves as ‘contract’ for the ‘objects on the wire’; i.e., the
serialized objects.

For the record, we should note that, in principle, object serialization, by it-
self, does not necessitate O-to-X mapping since an untyped XML format could
suffice. In fact, object serialization does not even require the use of XML since
representation formats other than XML may be used [29].

Revealing the X/O Impedance Mismatch 299

Let us illustrate ‘code first’ and a typical, canonical O-to-X mapping. We use
WCF’s ‘data contracts’ [47] (which is now part of the .NET platform) as the
‘code first’ technology of choice. Several X/O mapping technologies, including
xsd.exe, actually serve both X-to-O and O-to-X mappings, but we prefer a
pure ‘code first’ technology for clarity. Fig.[lshows an object model (for purchase
orders) that is prepared for ‘data contracts’. That is, there are custom attributes
(annotations in the Java terminology) to ‘mark’ the classes and the members that
are meant to participate in object de-/serialization; cf. DataContract and DataMember.
As it happens, the object model in the figure is identical to the earlier schema-
derived object model (the ‘plain objects’ version) — except for the additional
custom attributes.

The data-contracts technology indeed leverages XML for ‘objects on the wire’
including an O-to-X mapping to derive an XML schema from a given object
model. The customization of the XML format is deliberately very limited: one
can just customize names and order (using additional custom attributes not
exercised in the example). In addition, there are some controls that serve se-
mantical aspects: one can take precautions so as to achieve round-tripping for
unknown data; one can also deal with sharing in object graphs. Fig. [8 shows
the O-to-X mapping result for our running example. The derived schema differs
substantially from the ‘schema first’ version [Clearly, the derived XML schema
is more complex than the handcrafted one, but this is of no real concern — if
we assume that the XML schema is not to be used directly by any developers.
In particular, the XML representation of ‘objects on the wire’ is not to be the
target of any ‘native’ XML processing code. In the case of data contracts, the se-
rialization technology is indeed the only authority that needs to deal with XML
directly.

In general, it may be that the derived XML schema does not just serve as a
‘contract’ and that XML does not just serve as a representation format. Instead,
the XML format may be subject to ‘native’ XML processing, in which case the
derived schema should be of help for the typed XML programmer. For instance,
it is not uncommon to encounter the expectation that data modeling with XSD
can be circumvented by means of object modeling (and O-to-X mapping). In such
a case, O-to-X mappings would be expected to deliver schemas that reasonably
compare to native schemas typically devised by an XML & XSD expert. We
contend that the biggest challenge, in this case, is the conceptual clash between
object graphs vs. XML trees; cf. Sec. Bl We either need to restrict the use of
the object model to trees or serialize arbitrary object graphs as trees with the

1 For completeness’ sake, here is a list of differences:

All content is mapped to elements; attributes are not used.

— A designated XML namespace for data contracts is used.

— At a given level, particles are sorted alphabetically.

— Arrays are mapped to wrapper elements with repeating elements inside.
Most particles are said to be nillable, i.e., their content may be omitted.
— Named complex types are used (as opposed to anonymous ones).

300 R. Lammel and E. Meijer

<xs:schema xmlns:tns="http://schemas.datacontract.org/2004/07/"
elementFormDefault="qualified”
targetNamespace="http://schemas.datacontract.org/2004,/07/"
xmlns:xs="http://www.w3.org/2001/XMLSchema”>

<xs:complexType name="orders” >
<xs:sequence>
<xs:element minOccurs="0" name="order” nillable="true”
type="tns:ArrayOforder” />
< /xs:sequence>
< /xs:complexType>

<xs:element name="orders" nillable="true" type="tns:orders” />

<xs:complexType name="ArrayOforder” >
<xs:sequence>
<xs:element minOccurs="0" maxOccurs="unbounded”
name="order" nillable="true” type="tns:order” />
< /xs:sequence>
< /xs:complexType>

<xs:element name="ArrayOforder” nillable="true” type="tns:ArrayOforder” />

<xs:complexType name="order">

<Xxs:sequence>
<xs:element minOccurs="0" name="id" nillable="true” type="xs:string” />
<xs:element minOccurs="0" name="item" nillable="true” type="tns:ArrayOfitem” />
<xs:element minOccurs="0" name="zip” type="xs:int" />

< /xs:sequence>

< /xs:complexType>

<xs:element name="order” nillable="true” type="tns:order” />

<xs:complexType name="ArrayOfitem” >
<xs:sequence>
<xs:element minOccurs="0" maxOccurs="unbounded”
name="item” nillable="true” type="tns:item” />
< /xs:sequence>
< /xs:complexType>

<xs:element name="ArrayOfitem” nillable="true” type="tns:ArrayOfitem” />

<xs:complexType name="item" >

<Xxs:sequence>
<xs:element minOccurs="0" name="id" nillable="true” type="xs:string” />
<xs:element minOccurs="0" name="price” type="xs:double” />
<xs:element minOccurs="0" name="quantity” type="xs:int” />

< /xs:sequence>

< /xs:complexType>

<xs:element name="item” nillable="true” type="tns:item” />

< /xs:schema>

Fig. 8. A derived XML schema for purchase orders

encoding of object identities or ownerships, which implies complications for the
XML programmer. The ‘trees vs. graphs’ problem also shows up in the X-to-O
direction. In the sequel, we focus on X-to-O mappings, indeed.

Revealing the X/O Impedance Mismatch 301

2.6 Properties of X-to-O Mappings

Before we start to list X-to-O mapping options, let us identify important proper-
ties of X-to-O mappings, such as their completeness with regard to the supported
schema constructs or the palatability of the derived object models. While all the
properties to come are easily explained and intuitively desirable, the full set is
hard (or impossible) to deliver consistently by X-to-O mappings (because of the
X /0O Impedance Mismatch).

Acceptor Completeness

A mapping should accept any valid XML schema. Also, the resulting object
model should accept any XML document that is valid with regard to its associ-
ated schema. (That is, de-serialization must not throw.) Giving up on mapping
completeness may be acceptable, if the supported ‘schema profile’ is well defined.
In contrast, we definitely face a correctness issue in the case of an object model
that ‘rejects’ a valid XML instance (during de-serialization).

Schema-Constraint Preservation

Ideally, every schema constraint would have a counterpart in the derived ob-
ject model. We need to be prepared for two forms of counterparts. First, some
constraints may be mapped to object-modeling concepts whose static typing
faithfully corresponds to schema validation. Second, other constraints may be
mapped to object-modeling concepts whose dynamic semantics faithfully corre-
sponds to schema validation or constraint enforcement.

While acceptor completeness is ‘state of the art’ (modulo bugs), this is not the
case for schema-constraint preservation. Admittedly, full preservation of schema
constraints is very challenging. For instance, the xsd. exe tool does not preserve
any of the following schema constraints:

— The element types of the branches in a choice; cf. Sec.
— Mandatoriness (as opposed to optionality); cf. Sec. &1l
Simple- and complex-content restrictions; cf. Sec.

The various identity constraints.

Palatability

This term has been coined in [I7] and it makes nicely clear that we are entering
an informal dimension here. Ideally, when mapping a given schema to an object
model, the result should reasonably compare to a ‘native object model’, i.e., an
object model that an OO developer would typically devise. This requirement is
hard to measure, but our introductory example illustrated violations of palata-
bility. For instance, a content model with recurrent element names led to name
mangling (recall the field names Exp and Exp1). We will encounter many cases of
unpalatability in the subsequent sections.

302 R. Lammel and E. Meijer

Programmability
Related to palatability is the concept of programmability. That is, we expect the
schema-derived object model to be convenient in programming on XML data,
when compared to native forms of XML processing such as XSLT or XQuery,
while assuming equal familiarity with OO and XML programming. In particular,
we expect to carry out queries, updates and construction in a convenient manner.
Programmability is a property that sets X-to-O mappings apart from the
neighboring field of schema-aware XML-to-relational mappings [SI7152]. An X-
to-R mapping mainly focuses on the definition of a storage representation for
XML data in a database such that the XML data can be efficiently retrieved and
updated. It is not necessary to accommodate a rich XML programming model
directly on the shredded XML data. In contrast, an X-to-O mapping should
deliver object models whose interface is readily convenient for devising data
processing functionality on the XML data.

XML Fidelity

We use the term ‘XML fidelity’ to refer to the capability of a schema-derived
object model to grant access to all facets of XML data by observations (O), to
maintain them along transformations (T), and to construct them (C). Here is a
list of facets and an illustrative compliance matrix for xsd.exe:

Facet of XML data oT/C
Structured content (flat composites) + +
Structured content (nested composites) +
Mixed content (interim text)
Whitespace - =
XML comments - -
Processing instructions (PIs) - -
Order of attributes - =
Namespace prefixes - -
Embedded DTDs - -
Encoding (Ldmmel vs. Lämmel) — —

~
~

Legend:

— “47 — Fidelity definitely holds.

— “=” — Fidelity does not hold.

— “?7 — Sloppy fidelity.

— The bars in the table separate groups of aspects that can be best labeled as follows:
e Structured content.
e Important infoset-like data [66].
e Lower-level representation facets of XML data.

Round-Tripping
The property of maintaining facets of XML data along transformations can be
formalized as a more specific round-tripping property. That is, a de-serialization

Revealing the X/O Impedance Mismatch

public static T InOutSequence<T>(string filein, string fileout) {
var reader = new StreamReader(filein);
var serial = new XmiSerializer(typeof(T));
var t = (T)serial . Deserialize (reader);
reader . Close ();
var writer = new StreamWriter(fileout);
serial . Serialize (writer ,t);
return t;

Fig. 9. Serialization + de-serialization sequence

An element declaration with a nested composite

<xs:element name="nest" >
<xs:complexType>
<Xxs:sequence>
<xs:element name="2a" type="x"/>
<xs:sequence maxOccurs="unbounded” >
<xs:element name="b" type="y" />
<xs:element name="c" type="z"/>
< /xs:sequence>
< /xs:sequence>
< /xs:complexType>
< /xs:element>

A possible mapping result

public class nest {
public x a;
public y[] b;
public z[] c;

}

A trace of a round-tripping attempt

<nest> <nest>

<a/> <a/>

INPUT: <c/> OUTPUT:
 <c/>

<c/> <c/>

< /nest> < /nest>

Fig. 10. Illustration of a round-tripping violation

303

304 R. Lammel and E. Meijer

phase (or a ‘load’ operation) followed by an immediate serialization phase (or a
‘save’ operation) is supposed to preserve all (or some) facets of XML data.

As a clarification, Fig. [0 shows a C# function that would be helpful in estab-
lishing round-tripping compliance or revealing violations thereof. The function
exercises de-serialization, followed by serialization for a given type, input file and
output file based on the System.Xml.Serialization namespace that goes with the
xsd.exe tool. We can then use (external) ‘diffing’ functionality to compare the
original input and the result of the de-serialization/serialization sequence.

Fig. runs an XML schema by xsd.exe; it turns out that the order of
structured content is not preserved by the plain de-serialization+serialization se-
quence. The particular example exercises nested composites, and round-tripping
fails because the schema-derived object type does not maintain nesting (neither
at the level of static type structure, nor by means of extra ‘housekeeping state’).

Extensibility and Customizability

It is not uncommon to hear of a requirement that the mapping result must be (in
some sense) extensible or customizable. In fact, the borderline between mapping
customization and ‘programmatic mapping’ remains blurred until we find a rea-
sonable definition of both terms. For instance, extra methods or state may need
to be accommodated by the resulting object model, e.g., for the purpose of event
handling. Compile-time class extension (such as with partial classes of NET) or
post-compile-time class extension (such as with extension methods of the C#
3.0 language [45/46]) are specific linguistic means of tackling such extensibility
and customizability. Also, the mapping itself may be subjected to a requirement
for customization. For instance, it may be desirable to turn XML-data binding
off for some parts of the schema so that the corresponding XML data is exposed
through a generic, DOM-like API as opposed to schema-derived object types.
For the record, XML objects (cf. Sec. 24]) make this particular kind of map-
ping customization unnecessary since both typed and untyped access would be
provided anyhow.

3 The X/O Data Models

The crux of the X/O Impedance Mismatch lies in the difference between the
data models of X and O, say their ‘semantic domains’ with the essential opera-
tions on XML data and objects In the present section, we characterize these
domains and point out differences that may contribute to the X/O Impedance
Mismatch. To give a simple example, XML distinguishes element vs. attributes,
whereas objects are composed from sub-objects in a uniform manner, and hence

12 For the record, the official definition of the semantic domain for XML is the XML
information set (‘infoset’ [66]), which covers observation operations on XML trees.
(Observations may be rendered as queries in a language like XPath [65]). XML sup-
port for imperative OO languages also provides update operations, such as those
defined by DOM [64]. Ultimately, validation is a further assumed operation (a pred-
icate, in fact) on XML trees.

Revealing the X/O Impedance Mismatch

An object model that admits cycles

public class Foo

{

public Foo bar;

}

A derived schema for the above object model

<xs:element name="Foo" nillable="true" type="Foo" />
<xs:complexType name="Foo">

<xs:sequence>

<xs:element minOccurs="0" name="bar" type="Foo" />
< /xs:sequence>
< /xs:complexType>

An illustrative use of the object model

// Create cyclic object

var x = new Foo();

X.bar = x;

// Serialize to XML

var myWriter = new StreamWriter(”foo.xml”);

XmlSerializer serializer = new XmlSerializer(typeof(Foo));
serializer . Serialize (myWriter,x); // THROWS!

Fig. 11. Illustration of a serialization problem for object graphs

305

XML’s distinction may be hard to represent by objects. The following subsec-

tions contrast ‘X vs. O’ in the following respects:

—_

Trees vs. graphs

Accessible vs. unavailable parents
Ambiguous vs. unique nominal selectors
Queriable trees vs. dottable objects
Node labels vs. edge labels

Ordered vs. unordered edges

Qualified vs. local selectors
Semi-structured vs. structured content
Tree literals vs. object initialization

© XN oUW

3.1 Trees vs. Graphs

The semantic domain for objects is essentially a certain class of (constructable,
navigable, updatable) graphs. In contrast, the semantic domain for XML is es-
sentially a certain class of (constructable, navigable, queriable, and potentially

306 R. Lammel and E. Meijer

updatable) trees. When object graphs are used to represent XML trees, then the
object semantics may give too much freedom to the programmer who is operat-
ing on XML data in objects. That is, one can freely create object graphs with
sharing or cycles.

When a violation of the intended tree invariant of XML data goes unnoticed,
then this may lead to problematic serialization behavior. Different things may
happen: serialization may loop, run out of resources, or throw due to cycle de-
tection — depending on the technology in question. Fig. [[Tlillustrates this issue.
The object model at the top admits the construction of cyclic object graphs. The
shown XML schema in the middle of the figure was derived from the object model
(using the xsd.exe tool in the O-to-X direction). Of course, the element decla-
ration is recursive, but without the admitted semantics of data-level recursion.
When we execute the test code, given at the bottom of the figure, serialization
throws due to cycle detection.

Hence, the use of object types imposes an obligation on the programmer: ‘Do
not create cycles!” For sharing (without cycles), the situation is perhaps less
severe; depending on the technology in question, sharing may be admitted mod-
ulo the potentially too implicit effect of losing sharing along serialization. (As
a result, object graphs with sharing do not round-trip.) The typical OO type
system is not helpful in enforcing the tree invariant. One can imagine idiomat-
ically implemented object types (on the grounds of ‘XML objects’; cf. Sec. [2Z4])
that enforce the tree invariant at runtime, through dynamic checks based on ex-
tra ‘housekeeping state’, potentially complemented by a cloning semantics. Such
a tree-like semantics for objects is not straightforward and may be considered
unpalatable.

In principle, one can serialize object graphs as XML trees (by using generated
ids in the serialized XML). However, such an approach is not helpful in the X-to-
O direction of mapping, i.e., for the ‘schema first’ model, unless the given XML
schemas readily used ids/idrefs or other means of representing graph shape.

3.2 Accessible vs. Unavailable Parents

XML’s semantic domain does not just assume the tree invariant for XML data,
it actually assumes that tree shape is observable in the sense that one can nav-
igate from a subtree to its parent. The semantic domain of objects does not
provide any counterpart. As a result, certain idioms of XML processing are no
longer expressible when XML data resides in ‘plain objects’. One can imagine
idiomatically implemented object types (on the grounds of ‘XML objects’; cf.
Sec. [Z4)) that provide parent access.
Consider the following illustrative assignment:

Suppose we want to process a list of order items (as opposed to a batch
of orders). The idea is that this list may be pre-selected by a differ-
ent program component. For instance, this list may comprise all those
items (from a batch of orders) that require a backing purchase before sale
can be confirmed. Further suppose that the processing functionality must

Revealing the X/O Impedance Mismatch 307

public static XElement ltemsPerZip(IEnumerable<XElement> items)

{
return
new XElement("groups”,
from i in items
group i by i.Parent. Attribute ("zip”).Value into g
select
new XElement("group”,
new XAttribute("zip”, g.Key),
g.Elements()));
}

Fig. 12. Untyped LINQ to XML code for grouping items by zip code

public static bool EditAddress(XElement addr)

{

XElement edit = new XElement(addr); // Clone for editing
bool change = ModalXmlEdit(edit); // GUI data binding

if (change) addr.ReplaceWith(edit); // Replace if necessary
return change;

Fig. 13. In-place data manipulation for GUI data binding of XML tree (an address)

determine the zip code per item, be it to group the items per zip code
so that the transport for the backing purchases can be organized per zip
code.

In this case, we need access to the parent axis so that we can retrieve the zip code
for each item. Fig. [[2 shows a corresponding function that groups the incoming
list of items by zip code[

The expressiveness of the parent axis is not limited to queries, but it also
applies to updates. For instance, due to the parent axis, a reference to an XML
(sub)tree is sufficient to replace the tree. (Clearly, a plain object reference cannot
facilitate such in-place updates.)

Fig. [[3 shows a function EditAddress with an argument for an address (an XML
tree) to be edited. The actual editing phase operates on a cloned XML tree,
thereby enabling a simple means of an UNDO capability. Per convention, the
call of the function ModalxmiEdit returns true, if the editorial changes are to be

13°A note on LINQ constructs: we use the LINQ notation for grouping items in a
collection by a grouping key; cf. “group ...by ...into ...”. The grouping operation
returns a nested collection where each outer item (a group) is paired with a grouping
key.

308 R. Lammel and E. Meijer

committed back to the caller of EditAddress. Hence, if true is returned, then the
original XML tree is replaced by the changed clone. To this end, we use the
ReplaceWith operation, which is one of the update operations of the LINQ to XML
API. Clearly, this update operation must navigate to the parent and update its
child list.

3.3 Ambiguous vs. Unique Nominal Selectors

Given an object, its sub-objects are uniquely addressable by means of ‘edge
labels’, i.e., field or property names. No such unique, nominal selectors are gen-
erally available for XML trees. There are unique positions for each subtree, but
name-based selection would be based on ‘node labels’, i.e., element names, and
these can be ambiguous.

An element declaration may carry a non-default maxOccurs constraint, in which
case contiguous subsequences of subtrees in a tree may carry the same label.
More severely, a content model may involve multiple element declarations with
the same name. As a result, an otherwise tempting 1:1 mapping from element
particles (of a given content model) to field or property declarations (of a corre-
sponding object type) is problematic. For instance, how do we map the following
content model?

<xs:element name="/ine">
<xs:complexType>
<xs:sequence>
<xs:element name="point” type="point Type” />
<xs:element name="point” type="point Type” />
< /xs:sequence>
< /xs:complexType>
< /xs:element>

(We saw a similar example in the introduction of the paper.) In mainstream OO
languages, we cannot have multiple fields with the same name, point. A typical
workaround, chosen by X-to-O mapping tools, is to engage in ‘name mangling’.
For instance, the two different occurrences of the element name point would result
in two field or property names point and point2.

Instead of name mangling we may (or perhaps we should) adopt a different
view on the problem. That is, we could give up on the 1:1 mapping from element
particles to OO members. Instead, the mapping would be 1:1 from element names
to OO members. An OO member may be of a collection type so as to reflect
that multiple element declarations are covered (in addition to the trivial case
of a single declaration for a repeating element). In the example, the resulting
object type provides a single field point of a list type; cf. Fig.[[4 Read access (say,
‘query mode’) for such OO members may be seen as an XPath-like child axis.
Write access (say, ‘update mode’) is potentially challenging for content models
with nested composites; cf. Sec.

This (uncommmon) approach is the required basis for a correct mapping such
that XPath queries (using the child axis) can be mapped to object queries in

Revealing the X/O Impedance Mismatch

An XML schema that exercises recurrent element names

<xs:element name="/ine" >
<xs:complexType>
<xs:sequence>
<xs:element ref="point” />
<xs:element ref="point” />
< /xs:sequence>
< /xs:complexType>
< /xs:element>

<xs:element name="point">
<xs:complexType>
<Xxs:sequence>
<xs:element name="x" type="xs:int" />
<xs:element name="y" type="xs:int" />
< /xs:sequence>
< /xs:complexType>
< /xs:element>

A possible mapping result

public class line

{

public List <point> point;

}

public class point

{
public int x;
public int y;

}

Fig. 14. Illustration of a mapping rule for recurrent element names

309

a semantics-preserving manner. That is, for a given XML tree ¢t and an XPath
query ¢, we should be able to obtain the same objects in the following two ways:
(i) evaluate g on ¢t and map the result to objects; (ii) map ¢ to an object query

q', map t to an object on which to evaluate ¢'.

Instead of using a more involved mapping rule, we may also require a slightly
more powerful OO language. The C#-like research language Cw [42J4T6] pro-
vides a type language that admits recurrent field names. Cw generalizes normal
member access (“.”) so that the multiple occurrences can be referred to by the
recurrent name. The update direction for generalized member access is a subject

for future work.

310 R. Lammel and E. Meijer

Adaptive coding style for totaling purchase orders

public static double GetTotalByZip(XElement os, int zip)

{
return (from i in os.Descendants(”item”)
where (int)i.Parent. Attribute ("zip") == zip
select ((double)i.Element("price”) * (int)i.Element(”quantity”))
). Sum();
}

For comparison: the original encoding

public static double GetTotalByZip(XElement os, int zip)

{

return (from o in os.Elements(”order”)
from i in o.Elements("item”)

where (int)o. Attribute ("zip”) == zip
select ((double)i.Element(”price”) = (int)i.Element(”quantity”))
).Sum();

Fig. 15. Illustration of the use of the descendant and parent axes

3.4 Queriable Trees vs. Dottable Objects

We have already mentioned the additional parent axis for XML trees. Also, we
have explained that an XPath-like child axis is different from the mainstream
member access (“.”) for objects. There are further axes for XML queries that
do not come with any obvious counterpart in mainstream OO languages. This
is another kind of expressiveness aspect of the X/O Impedance Mismatch. An
XML programmer (used to say XQuery) would be ‘disappointed’” when moving
to Java or C# (assuming a classic X-to-O mapping). Here is a comprehensive
list of XML axes that are missing in OO:

— Attribute axis

— Parent axis

Descendant /Descendant-or-self axes

— Ancestor/Ancestor-or-self axes

Following-/Preceding-sibling axes

— Following/Preceding axes (i.e., nodes following /preceding in document order)

Also, XPath provides a general idiom for expressing filters on axes.

Fig. shows another (somewhat contrived) encoding for totaling orders;
it leverages both the descendant and parent axis. One could argue that this
example is more ‘adaptive’ in that the use of the descendant axis helps us to

Revealing the X/O Impedance Mismatch 311

detach ourselves from the precise shape of the XML tree; we only commit to
the fact that there are items and that zip codes are found at the parents of
items — no matter how many levels we need to descend to find items; no matter
what the element name may be for the parent of items.

There are several OO programming techniques and language extensions that
make a related contribution. Adaptive programming [35], which has been em-
bedded into various OO languages, provides an efficiently executable selector
language with coverage of an idiom that is reminiscent of the descendant axis.
Similarly, there are advanced visitor techniques and OO embeddings of term-
traversal strategies [6334]. The C#-like research language Cw [42/4TlJ6] provides
a primitive (“...”) that mimics the descendant axis. When faced with general
(potentially cyclic) object graphs, it is actually not obvious what the behavior
of such an axis would be.

3.5 Node Labels vs. Edge Labels

Elements names are essentially node labels whereas property names are essen-
tially edge labels. An element name is semantically part of the element itself,
whereas an OO member name (of a field or a property) is a selector for a sub-
component. In fact, objects are also labeled — by means of a type tag. While
these type tags seem to be similar to element names, they do not serve any
established purpose for member selection. Mainstream technologies for X-to-O
mappings tend to ‘neglect’ this difference. A common XSD mapping rule (used
by various X-to-O mapping tools) reads as follows.

When mapping a content model, given a local element declaration with
element name n and element type t, the corresponding field declaration
leverages n as name and t as type.

In Fig.[I6 we illustrate the intuition that goes with the above mapping rule. The
first schema style really ‘makes one think’ that element particles are like field
declarations. However, semantically, the local element declarations define local
types of elements with the local element names as intrinsic parts. The second
schema style is perhaps less misleading: the types of elements are ‘prefabricated’
in global declarations and then merely referenced in content models. The two
formulations define the same XML language (modulo some fine details).

It should be clear by now that the choice of the (mapped) element type (cf.
” in an element declaration) as the type of the associated field or prop-
erty implies imprecision. Consider the XPath expression item/price which selects
all price trees as opposed to price values. Hence, mapping the element particle price
to a field of type double is sloppy. One could say that this sort of mapping rule
composes node selection and value access. In any case, there are some potentially
harmful implications:

“type:”

— We effectively lose information: the element name. If we later inspect a price
in the form of a value of type double, it is impossible to observe that it is
actually a price.

312 R. Lammel and E. Meijer

Use of local element declarations

<xs:element name="item” >
<xs:complexType>
<xs:sequence>
<xs:element name="price” type="xs:double” />
<xs:element name="quantity” type="xs:int" />
< /xs:sequence>
<xs: attribute name="id" type="xs:string” use="required” />
< /xs:complexType>
< /xs:element>

Use of references to global element declarations

<xs:element name="item” >
<xs:complexType>
<xs:sequence>
<xs:element ref="price” />
<xs:element ref="quantity” />
< /xs:sequence>
<xs: attribute name="id" type="xs:string” use="required” />
< /xs:complexType>
< /xs:element>

<xs:element name="price” type="xs:double” />
<xs:element name="quantity” type="xs:int" />

Fig. 16. Different styles of schema organization

— It follows that type equivalence for elements (such as prices) is relaxed to
type equivalence for element types (such as doubles).

— We also lose the parent axis — at least for simple element types because we
cannot possibly attach any parent pointer to values of primitive types.

With some effort, we can preserve XML’s node labels in the object world. To this
end, we need to designate distinct object types to all global and local element
declarations. (For the sake of a homogeneous situation, we may also designate
object types to attribute declarations.) Despite the use of element names as type
names, the element names may continue to serve as property names (modulo
qualification problems for element names, as discussed later).

When we apply the new rule to the schema for purchase orders, we end up
with the following additional object types: id, zip, price, quantity; cf. Fig [l The
new types are defined as ‘wrapper types’; they wrap content of the appropriate
types, i.e., double, int Or string. The wrapping idiom is factored out to a generic class

Revealing the X/O Impedance Mismatch 313

Node-labeled object types of a complex types

public class orders

{

public order[] order;

public class order

{

public item] item;
public id id;
public zip zip;

}

public class item

{

public price price ;
public quantity quantity;
public id id;

}

Node-labeled object types of a simple types

public class id : Wrapper<string> { }
public class zip : Wrapper<int> { }
public class price : Wrapper<double> { }

public class quantity : Wrapper<int> { }

Generic helper class

public class Wrapper<T>
{
public T Value;
public static implicit operator T(Wrapper<T> it) { return it.Value; }

}

Fig. 17. Illustration of a node-label-preserving mapping

Wrapper. This class also provides an implicit cast operation for wrappee access[
The implicitness of the cast implies that the original query code for computing

14°A note on C#: User-defined cast operators are very much like static methods ex-
cept that they mediate between two types. There is the explicit operator form which
can be seen as a user-defined down-cast as in (double)aPriceObject. There is also the
implicit operator form; implicit operators are automatically applied, just as up-casts,
whenever the context of an expression requires the target type. In both cases, the
two involved types must not engage in subtyping relationships so that the extra casts
do not introduce any ambiguities.

314 R. Lammel and E. Meijer

the total does not need to be changed in a single detail. Hence, the increased
precision of the new object model does not negatively affect query convenience.

This development triggers a question:

Why is such a node-label-preserving mapping not commonly used?
It appears to be the only sensible option from a conceptual point of view!

Here is an attempt of an explanation:

— The mapping is not too obvious in the first place.

— Field declarations of the form “public price price;” are arguably unpalatable.

— Programmers expect the systematic use of familiar value types (such as
double).

— The weaknesses of a more sloppy mapping have not been discussed thor-
oughly.

— The mapping of local element declarations may lead to heavily nested object
types.

— The additional ‘object types’ may be overwhelming and imply overhead.

— Object construction may require construction of many ‘mini objects’.

We will regularly return to the tension between node-label omission and preserva-
tion. We will further substantiate that the (common) node-label-omitting map-
ping is indeed inferior in a conceptual sense, but the (uncommon) node-label-
preserving mapping is challenged by palatability considerations and technical
problems.

3.6 Ordered vs. Unordered Edges

The edges of an XML tree are positionally labeled, thereby expressing signif-
icance of order among the immediate subtrees of an XML tree. This order is
programmatically relevant in various ways (in the context of XPath-like XML
processing). For instance, there are sibling axes. Most importantly, there is the
notion of document order that defines the order of nodes in query results.

In contrast, the edges in an object graph are nominally labeled while the order
of these labels (such as the textual order in the program text) does not matter,
as far as the idealized, mathematical semantics is concerned. (It may matter
with regard to performance due to object layout. It may also be observable by
reflection.) In fact, XML attributes are nominally labeled, too.

When performing canonical X-to-O (and O-to-X) mappings, it is common to
identify textual order of OO member declarations with XSD’s <sequence> com-
posites. When XML data is de-serialized into objects, then it is common to be
flexible with regard to order. That is, an object is populated with subtrees even
if they appear in an order that is different from the schema-prescribed <sequence>
composite. One argument in favor of such behavior is that the added flexibility
increases interoperability.

Revealing the X/O Impedance Mismatch

A class with three fields

public class abc
{

public int a;
public int b;
public int c;

}

The XML schema derived from the above object model

<xs:element name="abc” nillable="true” type="abc" />
<xs:complexType name="abc”">
<Xxs:sequence>
<xs:element name="a" type="xs:int” />
<xs:element name="b" type="xs:int" />
<xs:element name="c" type="xs:int" />
< /xs:sequence>

< /xs:complexType>

Input — incomplete and disordered Output — complete and ordered
<abc> <abc>
<c>1< /> <a>2
<a>2 0
<c>1</e>
</abc> </abc>

Fig.18. A test case for ordering and presence

315

<all> composite are typically mapped just as if they were <sequence> com-
posites (while de-serialization would be more relaxed, if it was order-aware for
<sequence> composites). However, one could argue that the order of children in
the input should be maintained by populated objects (for the purpose of round-
tripping; also order may matter). Likewise, an object type for an <all> composite
should admit different orders of populating the composite. Such a behavior can-

not be expected from plain objects.

Fig demonstrates a typical form of treating order along de-serialization
and serialization. The class at the top is the ‘native’ object type from which we
start. The schema in the middle of the figure has been derived by xsd.exe (used

15 A note on XSD: there is the <all> compositor used for the construction of content
models. The compositor expresses that the components may occur in any order as
opposed to the sequential order of the <sequence> compositor. (<all> groups are remi-
niscent of ‘permutation phrases’ for string grammars [I3].) One may think that such
grouping expresses deviation from ordered edges, but it rather expresses insignifi-

cance of order during validation.

316 R. Lammel and E. Meijer

in the O-to-X direction). We see that a <sequence> composite is set up. Here
it is assumed that the textual order of member declarations in a serializable
class may indeed be a hint at the preferred serialization order. Also, XSD’s <all>
cannot be generally used anyhow because of XSD 1.0 expressiveness limitations.
Despite the commitment to <sequence>, de-serialization may still be more liberal
with regard to order (and therefore effectively handle the <sequence> like an <all>).

The input/output pair in the figure shows the behavior for de-serialization
followed by immediate serialization. Hence, disordered content is accepted, and
defaults are inferred for absent subtrees. One may argue that these are actually
two independent issues: flexible handling of order vs. default values for missing
subtrees or attributes. One may also argue that the violations should be subjected
to a relaxed validation scheme to be demanded explicitly by user code.

3.7 Qualified vs. Local Selectors

At the value level, the element names (labels) in XML may be unqualified or
qualified, but there are also rules for a sort of implicit qualification. At the type
level, element names may be unqualified or qualified. The potential of qualifica-
tion stresses the mapping of selectors in the XML sense (i.e., element names) to
selectors in the OO sense (i.e., OO member names) because OO member names
are always local — relative to an object type. Here are typical options for dealing
with potentially qualified element names; all of them leave a bad aftertaste:

1. Ignore qualifiers; adopt name mangling for disambiguation, if necessary.

2. Append namespace prefixes to member names for disambiguation, if neces-
sary.

3. Drop into an untyped, DOM-like representation.

Fig. shows a ‘test case’ for qualified element names. We define a content
model with three different bar’'s. The first bar comes from the target namespace
of the schema at hand; cf. prefix tns. The second bar is contributed by a local
element declaration. The third bar is imported from the namespace with prefix
ins. The options ‘ignore qualifiers’ and ‘append namespace prefixes to member
names’ are illustrated in Fig. (The option ‘ignore qualifiers’ is adopted by
the xsd.exe tool where name mangling appends an index “17, “2”) etc. to a
field name, if disambiguation is required. JAXB [54] adopts the option to ‘drop
into the DOM’ for content models of certain shapes, including the one used in
the test case.)

So we should reconsider the idea of leveraging element names as OO member
names. We may use a different protocol for member access: type-driven OO mem-
ber access. Conceptually, element references are indeed similar to type references
as one is used to in OO programming languages — including the possibility of
qualification for such type references. However, a type-driven access protocol re-
sults in an ‘unusual’ programming model . The type-driven protocol is sketched
in App. [A.1} it turns out to require cumbersome encoding efforts.

Revealing the X/O Impedance Mismatch

An XML schema with an import

<xs:schema targetNamespace="http://tempuri.org/foo”
xmlns:tns="http://tempuri.org/foo”
xmlns:ins="http://tempuri.org/bar”
xmlns:xs="http://www.w3.org/2001/XMLSchema” >

<xs:import namespace="http://tempuri.org/bar” />

<xs:element name="foo"” >
<xs:complexType>
<xs:sequence>

<!—— Three different bar’s ——>
<xs:element ref="tns:bar” />
<xs:element name="bar" type="xs:int"/>
<xs:element ref="ins:bar" />
< /xs:sequence>
< /xs:complexType>
< /xs:element>

<xs:element name="bar" type="xs:string” />

< /xs:schema>

An imported XML schema

<xs:schema targetNamespace="http://tempuri.org/bar"
xmlns:tns="http://tempuri.org/bar”
xmlns:xs="http://www.w3.org/2001/XMLSchema" >

<xs:element name="bar" type="xs:double” />

< /xs:schema>

Mapping option: names without hints at qualifiers

public class foo

{
public string bar;
public int barl;
public double bar2;

}

Mapping option: names with namespace prefixes appended to them

public class foo

{
public string barTns;
public int bar;
public double barlns;

}

Fig. 19. Mapping qualified element names

317

318 R. Lammel and E. Meijer

3.8 Semi-structured vs. Structured Content

A ‘plain object’ for data representation can be viewed as a dictionary that maps
field names to values. As we have discussed, node-labeled XML trees do not fully
align with this view (due to the lack of unambiguous, nominal selectors). Even
more seriously, there is no straightforward OO counterpart for semi-structured
content, i.e., content that intersperses elements and text. XML also admits ad-
ditional components such as XML comments and Pls. Hence, we face a rep-
resentation challenge: what sort of X-to-O mapping do we devise so that the
additional XML-isms do not get lost. In addition, we would also want a reason-
able programming model such that the XML-isms can be accessed in queries
and updates.

Let us focus on interim text in the sense of mixed content. (XML comments
and PIs require similar efforts.) Fig. shows an XML document with a letter
that involves mixed content; the figure also shows a corresponding schema frag-
ment; cf. mixed="true", as well as the mapping result obtained with the xsd.exe
tool. The schema-derived class devises a field, Text, that stores interim text in a
string array. At the bottom of the figure, we also show the letter as it looks like
after a de-serialization + serialization sequence. As we can see, the XML data
does not round-trip; all interim text is appended to the child elements.

In general, there are the following options for handling mixed content:

1. Drop into a DOM-like representation.
2. Store text separately from the fields for child elements.
3. Provide a collection of interim text and typed objects.

X /0 mapping technologies exercise all these options. As we have illustrated, the
second option is chosen by xsd.exe; cf. Fig. JAXB (ever since version 1)
favors the third option, where the access to the heterogeneous collection (say,
list) is provided by a so-called ‘general content property’. This approach, when
compared to ‘dropping into the DOM’, is more typed because the items in the
list (besides text nodes) are still of schema-derived object types as opposed to
a generic element type. A general content property provides less static typing
than regular OO members for child elements. In particular, a general content
property makes it easy to construct a node list that violates the relative order
constraints defined by a <sequence> composite.

Ultimately, one may want to combine the strengths of a ’general content
property’ (which is convenient for observing and constructing mixed content) and
OO members for the child elements. We attempt such a combination for the letter
example in Fig.[2Il The design can be summarized as follows. We store all content
in a plain list, nodes, thereby maintaining the order of element and text nodes. The
properties for the child elements operate on the nodes list in a type-driven manner.
(We only show getters in the figure; setters are more complicated because of
order constraints.) Without loss of generality, we assume a node-label-preserving
mapping. (A node-label-omitting mapping would require extra ‘housekeeping
state’ to maintain labels aside.) ‘XML objects’, as discussed in Sec. 24l would
naturally provide both, a general content property and OO members for the

Revealing the X/O Impedance Mismatch

A semi-structured letter

<letter>

Dear Mr.<name>Foo Smith</name>.

Your order <id>8837</id>

will be shipped on <shipdate>2008—04—01</shipdate>.
</letter>

A schema for semi-structured letters

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema”>
<xs:element name="\letter”">
<xs:complexType mixed="true"” >
<xs:sequence>
<xs:element name="name" type="xs:string” />
<xs:element name="id" type="xs:unsignedInt” />
<xs:element name="shipdate” type="xs:date” />
< /xs:sequence>
< /xs:complexType>
< /xs:element>
< /xs:schema>

A possible mapping result

public class letter

{
// Fields for element nodes
public string name;
public uint id;
public System.DateTime shipdate;
// Interim text
public string [] Text;

Serialization result

<letter >

<name>Foo Smith</name>
<id>8837< /id>
<shipdate>2008—04—01</shipdate>
Dear Mr..

Your order

will be shipped on .
</letter>

Fig. 20. Illustration of mixed content models

319

320 R. Lammel and E. Meijer

public class letter

{
// State as a plain list of nodes
public List <object> nodes = new List<object>();
// Getters as type—driven filters
public name name { get { return nodes.OfType<name>().FirstOrDefault(); } }
public id id { get { return nodes.OfType<id>().FirstOrDefault(); } }
public shipdate shipdate { get { return nodes.OfType<shipdate>().FirstOrDefault(); } }
}
// Node—label—preserving object types for simple—typed elements
public class name : Wrapper<string> { }
public class id . Wrapper<uint> { }
public class shipdate : Wrapper<DateTime> { }

// Generic helper class
public class Wrapper<T>

public T Value;
public static implicit operator T(Wrapper<T> it) { return it.Value; }

Fig. 21. Mixed content preservation along round-tripping

child element. However, the present discussion alludes to the relative complexity
of such an implementation — also taking into account arbitrary XSD patterns
and assuming full-fledged getter/setter functionality.

3.9 Tree literals vs. Object Initialization

XML trees (say, XML literals) are constructed by essentially listing subtrees (and
other nodes) at each level. An XML literal is the complete and direct represen-
tation of data as opposed to any form of private state in OO programming. In
contrast, objects are constructed by designated (implicitly or explicitly defined)
constructor members that initialize the state of a new object in a programmer-
defined manner, potentially taking into account constructor arguments. Also the
state space of an object type is typically exercised by calling methods. Despite
this fundamental difference, one would hope that ‘nested object construction’ is
capable of simulating the construction of XML literals. Unfortunately, the means
for static type checking of object construction are too weak to rule out the con-
struction of invalid XML content. (Arguably, our discussion starts to shift from
‘data models’ to ‘type systems’.)

Fig. 22 illustrates programmatic XML-tree construction in different styles. As
a baseline, at the top, we construct an untyped XML tree using the functional
element constructor of the LINQ to XML API; cf. new XElement(...). This form
follows closely the shape of the original XML data. That is, the various attributes
and child elements of orders or items are passed as arguments to the constructors.

The middle and the bottom parts in the figure illustrate typed construc-
tion assuming two different mappings and different idioms for construction. The
code in the middle relies on a node-label-omitting mapping. Also, we employ the

Revealing the X/O Impedance Mismatch

Construct an untyped, nested XML tree

new XElement("order”,
new XAttribute("id”, "47"),
new XAttribute(”zip”, "98052"),
new XElement("item”,
new XAttribute("id”, "23"),
new XElement(”price”, "42"),
new XElement(”quantity”, "2")),
new XElement("item”,
new XAttribute(”id”, ”32"),
new XElement("price”, "33"),
new XElement("quantity”, "3")));

Object initialization for a node-label-omitting mapping

new order {
id =47,
zip = 98052,

item = new item([] {
new item { id = "23”, price = 42, quantity = 2 },
new item { id = 32", price = 33, quantity = 3 }}};

Functional construction for a node-label-preserving mapping

new order(
new id("47"),
new zip(98052),
new item[] {
new item(new id(”23"”), new price(42), new quantity(2)),
new item(new id(”32"”), new price(33), new quantity(3)) });

Relevant functional constructors

public order(id id, zip zip, item[] item)
{

this.id = id;

this . zip = zip;

this .item = item;

public item(id id, price price, quantity quantity)
{

this.id = id;

this . price = price;

this . quantity = quantity;

}

Fig. 22. Different construction styles

321

322 R. Lammel and E. Meijer

expression-oriented syntax for object initialization of C# 3.0. To clarify this
construct, let us expand the expression-oriented syntax for one item of a purchase
order:

// Object— initialization syntax
var i = new item { id = "23”, price = 42, quantity = 2 };

// Ezpanded form

var i = new item();
i.id = "23";

i. price = 42,
i.quantity = 2;

The code at the bottom of the figure relies on a node-label-preserving mapping.
Also, we use ‘functional constructors’ to obtain an expression-oriented style of
nested tree construction. We did not show these constructors before, but they
are trivially defined, given the simplicity of the schema for purchase orders, as
shown in the figure.

At first sight, both of the methods for typed construction seem to be quite
reasonable. However, there are several issues that should be called out:

— OO constructors are more ‘type-oriented’ than ‘instance-oriented’. That is,
the objects that correspond to the repeating item element must be grouped
as a collection. (In contrast, the item elements would be part of a flat list of
children of the order element — when forming an XML literal.) We want to
argue that an OO programmer may actually appreciate this deviation from

XML style.

— Type checking for the object-initialization syntax does not account for occur-
rence constraints and the constraints implied by the different compositors.
For instance, type checking does not establish that all ‘required’ sub-objects
are determined.

— Functional constructors are convenient for sequences of mandatory sub-
objects. As soon as we have to deal with choices or even nested compos-
ites, we would need multiple constructors. The approach does not scale for
optional particles, <all> composites, and attributes.

— The use of functional constructors requires the (uncommon) node-label-
preserving mapping for the benefit of program comprehension. That is, XML
literals systematically identify element labels for all subtrees whereas the
node-label-omitting mapping would not provide any counterparts for the
element labels.

— Object initializers cannot be used for content models with recurrent element
names (unless we assume an object initializer to make multiple contributions
to a given sub-object of a collection type). Functional constructors naturally
deal with this problem since multiple argument positions can be of the same
type.

— Both techniques equally fail on mixed content and XML comments.

Revealing the X/O Impedance Mismatch 323

App.[A2engages in a heavy encoding showing that, in principle, one can provide
a construction protocol solving most of the above problems. We use a technique
that encodes content models as finite-state machines at the type level. Arguably,
the encoding is too convoluted for practical X-to-O mappings.

One may argue that language support for regular expression types [27/22]
would allow us to better type-check object construction. Such type-system ex-
tensions are not available in mainstream languages such as C# and Java. It is
important to note that plain, regular expression types are insufficient to cover a
comprehensive XML-type system like XSD. Think of subtyping; think of the di-
chotomy elements vs. attributes. Also, <all> composites and attribute collections
are not compatible with basic regular expression types (because these constructs
abstract from order). Furthermore, mixed content would require extra expres-
siveness. Finally, the effective use of regular expression types would generally
require the (uncommon) node-label-preserving mapping because all type dis-
tinctions from the content models would need to be observed by the regular
expression types.

4 The X/O Type Systems

We will now look into aspects of the X/O Impedance Mismatch that involve
XML types and object types in a more intimate manner, even though many of
the aspects are grounded in the differences between the data models of XML
and objects. The following subsections discuss a number of challenges offered by
XML schemas:

Occurrence constraints
Choice types

Nested composites
Local elements
Element templates
Type extension
Element substitution
Type restriction
Simple types

© 0 NSOk WD

A small part of the discussion is specific to (idiosyncrasies of) XSD.

4.1 Occurrence Constraints

We will focus here on optionality and mandatoriness. The discussion general-
izes in a unsurprising manner for arbitrary minOccurs/maxOccurs constraints — in
particular for possibly empty, non-empty and bounded repetitions of elements.

XSD offers regular expression—like optionality; cf. minOccurs="0" (and maxQOccurs="1"
per default). Mainstream programming languages like C# and Java provide op-
tionality for reference types by default since these types are nullable, i.e., their
value domains comprise the null reference. This implies that optionality is cov-
ered ‘automatically’ by an X-to-O mapping, except for fields or properties of

324 R. Lammel and E. Meijer

Optional elements both of simple and complex types

<xs:element name="opts">

<xs:complexType>
<xs:sequence>
<xs:element name="a" type="xs:int" />
<xs:element name="b" type="xs:int” minOccurs="0"/>
<xs:element name="c" type="foo" />
<xs:element name="d" type="foo” minOccurs="0"/>
< /xs:sequence>

< /xs:complexType>

< /xs:element>

<xs:complexType name="foo"”> ... details elided ... </xs:complexType>

A node-label-omitting mapping

public class opts

{
public int a; // Required field
public int? b; // Uses a .NET nullable type
public foo ¢; // Required field
public foo d; // Rely on null reference

public class foo { ... }

A node-label-preserving mapping

public class opts

{

public a a;

public b b;

public c c;

public d d;
}
public class a : Wrapper<int> { }
public class b : Wrapper<int> { }
public class c : Wrapper<foo> { }
public class d : Wrapper<foo> { }
public class foo { ... }

Fig. 23. Mapping of optionality

Revealing the X/O Impedance Mismatch 325

value types. We can explicitly express optionality for value types by using an
appropriate type constructor; in fact, NET readily provides nullable (value)
types@

Fig. 23 shows an XML schema that exercises optionality for simple and com-
plex element types, while required elements are also declared for comparison.
Both a node-label-omitting and a node-label-preserving mapping are exercised.
(Again, we use the wrapper class from Sec. [B0l) The first option illustrates the
asymmetry of implicit nullability for reference types and explicit nullability for
value types. The second option only uses reference types, and hence the asym-
metry vanishes — at the cost of losing all discoverability of optionality. That
is, optional and mandatory particles both end up as implicitly nullable mem-
bers. (The schema constrains may still be enforced through run-time checks of
properties.) The lack of discoverability is worrying. For instance, during object
access, members of implicitly nullable types do not tell the programmer which
parts of an object may be perfectly missing and hence require a programmatic
case discrimination for optionality. Tool tips and other IDE techniques may help
to mitigate this problem.

In principle, one could adopt a discipline such that optionality is generally
made explicit (not just for value types). We defer such an experimental treatment
of nullability to App. Such a degree of explicitness may be potentially
considered as unpalatable.

An Idiosyncrasy: Nillability

XSD complements optionality with nillability — a way of saying that ‘an ele-
ment is there and not there’. That is, by setting xsi:nil to true on an instance
element, the content of the element can (in fact, must) be omitted. However, the
empty element can carry attributes as prescribed by its schema type. An X-to-O
mapping can deal with nillability in these ways:

— Infer xsi:nil from absence of content.
— Provide a property to set xsi: nil.

Unfortunately, feature interaction complicates the matter. That is, there are
potentially hybrids: ‘niloptables’, i.e., nillable, optional particles:

<xs:element name="niloptable” >
<xs:complexType>
<xs:sequence>
<xs:element name="foo" type="xs:int” minOccurs="0" nillable="true” />
< /xs:sequence>
< /xs:complexType>
< /xs:element>

16°A note on .NET nullable types: The type constructor Nullable (also denotable as
“?” in C#) can only be applied to a value type, as opposed to a reference type. It
provides observations HasValue to check for a non-null value and Value to extract a
non-null value.

326 R. Lammel and E. Meijer

So we may need to distinguish ‘omitted in the sense of optional’ vs. ‘present but
nil’. Fortunately, nillability, even without optionality, is used relatively seldom
according to a study [32] — at least in the case of hand-crafted schemas. However,
we have seen components for schema generation (or export) that systematically
use nillability.

Enforced Mandatoriness

Since optionality is the default for reference types, we may want to enforce
mandatoriness; cf. minOccurs="1". In particular, we may check at run-time that no
nulls are passed to setters for mandatory particles, and no nulls are returned by
the getters. For instance, the mandatory element particle ¢ would be implemented
as a property as follows:

public foo ¢ {
get { if (c==null) throw ...; return c; }
set { if (value==null) throw ...; ¢ = value; }
}

private foo c;

As long as we admit default constructors, there is no guarantee that objects
are fully defined with regard to mandatory particles; hence the getters should
indeed perform checks. The elimination of default constructors would be a radical
step; OO programmers are used to the idea of initializing instances and defining
sub-objects incrementally. More importantly, a general scheme of non-default
constructors is not in sight, as we discussed in Sec.

This also leads us to review non-nullable types [I8], as they are becoming
available through extensions of C# and Java. As demonstrated by Cw [42/4T]J6],
non-nullable types can also be seamlessly integrated with regular expression
types. In the following experiment, we make mandatoriness for reference types
explicit:

public class opts

{

public int a; // required element of simple type
public int? b; // optional element of simple type
public foo! c; // required element of complex type
public foo d; // optional element of complex type

}

44'77

We assume the type constructor for non-nullable types. In the context of
X-t0-O mapping, we need a form of non-nullable types that admits ‘transient
nulls’ (as part of a stepwise object initialization protocol) or nulls due to ‘slightly
invalid’ content. Active assignment of nulls should be prohibited by the type
system, but fields of non-nullable types should be allowed to hold null, as long
as they are not accessed (say, read). Hence, such non-nullable types would still
involve some degree of dynamic checking.

Revealing the X/O Impedance Mismatch 327

Different element types

<xs:element name="AorB"> Coinciding element types

<xs:complexType>

<xs:choice> <xs:element name="CorD">

<xs:element name="a" type="A"/> <xs:complexType>

<xs:element name="b" type="B"/> <xs:choice>

< /xs:choice> <xs:element name="c" type="X"/>
< /xs:complexType> <xs:element name="d" type="X"/>
< /xs:element> < /xs:choice>

< /xs:complexType>
<xs:complexType name="A"> < /xs:element>
details elided ...
< /xs:complexType> <xs:complexType name="X">
details elided ...

<xs:complexType name="B"> < /xs:complexType>

details elided ...
< /xs:complexType>

Fig. 24. Different kinds of choices

4.2 Choice Types

Choice types (such as XSD’s <choice> composites or DTD’s form “alb”) pro-
vide a special kind of discriminated union, in fact, type-discriminated unions,
also known as type-indexed co-products (TICs; [B3])L1] Choice types or TICs
are not natively available in OO mainstream languages. Type-system extensions
for regular-expression types cover some form of choices. The research language
Cw [42I4T)I6] integrates choice types into an otherwise C#-like type system (with-
out updates though). For OO languages like Java and C+#, the goal must be to
devise a mapping for choice types by encoding them in some way.

For simplicity, we focus here on choices over plain element particles, deferring
the discussion of nested composites until Sec. Fig. exercises two prin-
cipled patterns for choices. On the left-hand side, we see a choice where the
element types (A vs. B) are different. On the right-hand side, the element types
coincide; only the element names are different. The latter pattern is more prob-
lematic in the context of the (common) node-label-omitting mapping, as we will
demonstrate shortly.

The simplest kind of mapping for choices may look as follows:

public class AorB

{
}

public object Item;

That is, a single iem field stores the value of the choice. The type of tem is the
least upper bound of the participants in the choice; this bound tends to be object.
Case discrimination must be based on instance-of tests. Neither the type system

7 For the record, TICs [53] are more general than XSD choices in so far that they
require pairwise distinct branch types but not the stricter UPA condition of XSD [67].

328 R. Lammel and E. Meijer

nor ‘IntelliSense’ can be expected to be helpful in picking reasonable types for
these tests.

The mapping for the second sample must devise an extra tag field since the
mapped element types by themselves do not admit discrimination. (The shown
mapping results for AorB and CorD were obtained with the xsd.exe tool.)

public class CorD

public X Item;
public ItemChoiceType ItemElementName;

}

public enum ltemChoiceType { c,d }

There are obvious problems with the options discussed so far:

— We can store objects of inappropriate types in the slot for the choice.

— The tagged union is unsafe because the tag and the item are set indepen-
dently.

— Object construction does not enforce population of either branch of the
choice.

— Code for case discriminations may (accidentally) omit cases.

We can definitely improve on all these concerns, but the resulting mapping will
become increasingly more complex. Also, several improved mapping options for
choice types (that one can think of) rely on extra preconditions on the XSD
patterns that involve <choice>. Ultimately, we seek a simple and general treatment
of choices.

As an experiment, Fig. 25 shows a conceptually appealing mapping:

The actual representation of the choice’s value is opaque.
— The branch can be queried based on a read-only tag.

— Injection is facilitated by implicit cast and construction.
— Projection is facilitated by explicit cast.

This scheme suffers from several limitations: (i) while the first sample can be
mapped in this manner, the second sample would require the (uncommon) node-
label-preserving mapping so that sufficient type distinctions can be used by
the casts; (ii) nested composites cannot be mapped in this manner, unless we
somehow introduce (named) classes for the inner composites; (iii) the resulting
programming model does not align with XML programming practice because
there is no XPath-like child axis.
We could fix the last problem by adding query members as follows{H

public A a { get { return any as A; } } // set omitted
public B b { get { return any as B; } } // sel omitted

'8 A note on C#: the “e as T” construct essentially behaves as follows: given the value
of e, its type is checked to be a subtype of T, and if so, the value is casted to T
otherwise the expression form evaluates to null.

Revealing the X/O Impedance Mismatch 329

public class AorB

{
// Injections (by construction)
public AorB(A v) { any = v; typeCode = TypeCode.a; }
public AorB(B v) { any = v; typeCode = TypeCode.b; }

// Injections (7up—cast”)
public static implicit operator AorB(A v) { return new AorB(v); }
public static implicit operator AorB(B v) { return new AorB(v);

// Projections (”down—cast”)
public static explicit operator A(AorB anOr) { return (A)anOr.any; }
public static explicit operator B(AorB anOr) { return (B)anOr.any; }

// Tag + inspection
public enum TypeCode { a,b };
public TypeCode typeCode { get { return typeCode; } }

// Private state
private object any;
private TypeCode typeCode;

Fig. 25. Choices based on casts

public class CorD
{
// Getters and setters
public X ¢ {
get { return (typeCode==1)7any:null; }
set { any=value; typeCode=1; }
}
public X d {
get { return (typeCode==2)7any:null; }
set { any=value; typeCode=2; }

}

// Private state
private X any;
private int typeCode;

}

Fig. 26. Choices as sequences

330 R. Lammel and E. Meijer

We may also add setters that ‘alter’ the choice. We may further add a default
constructor that sets up an uncommitted choice. Hence, the getters may return
null. Incidentally, the getters and setters are expressive enough to operate on the
choice, and hence we can eliminate the original injection/projection protocol; cf.
Fig. 20 for the end result. In fact, we have obtained a general and relatively con-
venient mapping rule for choices. Admittedly, choices and sequences cannot be
distinguished anymore in terms of the interface of a schema-derived class. (Only
the behavior of the properties is different; the setters for a choice implement
a mutual exclusion protocol.) Tool tips and other IDE techniques may restore
some degree of discoverability for choices.

4.3 Nested Composites

‘Flat’ composites can be modeled by object types that plainly aggregate mem-
bers. (Recurrent element names require more effort; cf. Sec. B3l) Nested com-
posites cannot be modeled by nested object types (classes), unless we invent
names for the inner composites. Here is a representative list of nesting patterns
as they can be used in XSD (and other XML-schema languages); we use regular
expression notation for conciseness:

element choicelnSequence =a(b|c)
element sequencelnChoice =a|(bo)
element plusOnSequence =(ab)t
element plusOnNestedSequence = a (b ¢)*
element plusinAndOut =a (bt o)t

In the terminology of grammars, the above patterns exercise expressiveness of
EBNF. Mainstream X-to-O mapping technologies tend to be challenged by these
patterns. In some cases, the schema-derived object models drop into untyped rep-
resentations (DOM and friends); in other cases, the round-tripping requirement
is violated. We can identify the following overall options for mapping nested
composites:

Reject nested content models.

Model compositors as OO generics.

Introduce auxiliary classes for anonymous composites.
Relax nested content models so that they become flat.
View nested content models in a flat manner.

GU Lo

We discuss the details of these options in the sequel.

Reject Nested Content Models

This option is too limiting. Nested content models are frequently used in real-
world schemas [32] according to a study. One may think that the XML program-
mer should be responsible to refactor the schema until all content models are
flat. However, the benefits of typed XML processing and X-to-O mapping should
be attainable without putting such a burden on the XML programmer.

Revealing the X/O Impedance Mismatch 331

plusOnNestedSequence = a (b ¢)+

<xs:element name="plusOnNestedSequence”>
<xs:complexType>
<xs:sequence>
<xs:element ref="a"/>
<xs:sequence maxOccurs="unbounded”>
<xs:element ref="b"/>
<xs:element ref="c"/>
< /xs:sequence>
< /xs:sequence>
< /xs:complexType>
< /xs:element>

The mapping result

public class plusOnNestedSequence
. Sequence<a,List<Sequence<b,c>>> // Content model as base type
{

// Inherit functional constructor for outer sequence
public plusOnNestedSequence(a first, List <Sequence<b,c>> second)
: base(first , second) { }

Fig. 27. Map a nested content model using generics for composites

Model Compositors as OO Generics

Based on suitable generics, we can enable the structural composition of OO
types in a way that parallels the composition of XSD composites. That is, we
need generics for <sequence> and <choice> (perhaps also for <al>, which we ignore
here because it is hardly used [32], according to a study, and hard to support
faithfully). The discussion of choice types has alluded to a suitable model for
the compositor <choice>. The compositor <sequence> is conceptually trivial; it cor-
responds to a product-type constructor in the sense of universal algebra. For
completeness’ sake, we include suitable generics in App. [A4l Fig. 27 illustrates
the use of generics (including the List<...> class) for a non-trivial nesting pattern.
The schema-derived object type simply inherits from the composed structural
type. This approach suffers from a number of problems:

— The ‘algebra of regular expressions’ is not observed by compound gener-
ics expressions. For instance, in the algebra of regular expressions, we have
(z*)* = z* while in the typical object-type system, we have List <List<x>> 7#
List <x>.

332 R. Lammel and E. Meijer

— If choices with type-driven injections and projections are favored, then the
(uncommon) node-label-preserving mapping is needed. We may consider po-
sition indexes instead, at the cost of making the programming model less
convenient.

— We need generic classes Sequence<...> and Choice<...> for all arities 2, 3, 4,
The available polymorphism in mainstream OO languages does not allow us
to parameterize over arity. As a remedy, we may switch to the nested use
of the binary generic classes, again, at the cost of making the programming
model less convenient.

— Using the structural type as the superclass of a schema-derived class rules
out the use of class inheritance for schema-defined substitutability, if we
assume single class inheritance. As a remedy, we may restrict the use of
generic classes to inner (i.e., truly anonymous) composites, which however
implies a naming challenge for top-level members that grant access to inner
composites.

— Manipulation of nested generics is known to be inconvenient in mainstream
OO languages [23] — due to limitations of type inference and other issues.
Also, as a matter of palatability, OO developers are used to object navigation
based on named members as opposed to positions or types.

Introduce Auxiliary Classes for Anonymous Composites

We may attempt to systematically name all anonymous composites. As a result,
we could use (nested) object types to model the nested composites. As a result,
familiar member-based access can be used (as opposed to the positions or types in
the case of the previous option). As an experiment, we suggest some nomination
rules:

— Use the following local type names for nested composites:
e Sequence, Sequence?, ... for <sequence>.
e Choice, Choice2, ... for <choice>.
— Use the following member names for accessing composites:
e AsSequence for non-repeating <sequence>.
e AsChoice for non-repeating <choice>.
e Aslist for a repeating <sequence> O <choice>.
* Return type:
- List<Sequence>, ... for repeating <sequence>.
- List<Choice>, ... for repeating <choice>.

We illustrate these rules in Fig. Additional refinements may be attractive.
For instance, XSD’s model-group definitions should be leveraged for providing
more specific names instead of the generic nominations above.

There is an obvious problem with the nomination-based approach. The pro-
grammer must be intimately familiar with the (nesting) structure of the content
model because it is resembled by local OO types and it therefore needs to be
observed by member-based access. The resulting style of queries does not deliver
on the expectation of an XPath-like child axis.

Revealing the X/O Impedance Mismatch 333

plusOnSequence = (a b)+

<xs:element name="plusOnSequence”>
<xs:complexType>
<xs:sequence maxOccurs="unbounded” >
<xs:element name="2a" type="x"/>
<xs:element name="b" type="y"/>
< /xs:sequence>
< /xs:complexType>
< /xs:element>

Informal summary of nomination

Before: plusOnSequence = (a b)™
After: plusOnSequence = Sequence™ where Sequence = a b

Resulting object model

public class plusOnSequence {
public List <Sequence> AsList;
public struct Sequence

{

public x a;
public y b;
}
}

Fig. 28. ‘AsList’ access to repeating, nested sequence

Relax Nested Content Models So That They Become Flat

So far we tried to derive object types whose nesting resembled the nesting of the
content model. Instead, we may trade precision for simplicity. One option is to
relax the content models, in the formal sense of subset order on tree languages,
so that the resulting content model is flat (and queries can be simpler).

For instance, we can relax a nested choice to a nested sequence over optional
items; cf. the upper part of Fig. This is essentially another interpretation
of the mapping rule that we already discussed for choices; cf. Sec. This
relaxation would result in a representation type that is too rich, if we were
using plain objects over fields, but a property-based API with appropriate setter
implementations may still enforce ‘mutual exclusion’ for the branches of the
choice.

We face a more aggressive example of relaxation when nested, repeating com-
posites are reduced to a repeating, element wildcard, say ‘any’. In the lower part of
Fig.[29 we carry out such a relaxation for two examples. The drawbacks of these re-
laxations are obvious. First, there is a naming issue: How do we name the property
that provides access to the relaxed collection? The ‘name concatenation’ approach

334 R. Lammel and E. Meijer

Treat choices like sequences

Before: choicelnSequence = a (b | ¢)
After: ~ab?c?

public class choicelnSequence

{
public x a { get { ... } set { ..
public y b { get { ... } set { ..
publicy c { get { ... } set { ..

}

e

Reduce repeating composites to untyped lists

Before: plusOnSequence = (a b)*"
After: ~ any™

public class plusOnSequence

{
public object[] aAndB;

Before: plusOnNestedSequence = a (b c)™"
After: ~>aany"

public class plusOnNestedSequence

{

public x a;
public object[] bAndc;

}

Fig. 29. Relax nested content models to become flat

used in the figure (cf. aAndB) is strikingly pragmatic, and does not scale for more
complex composites. Second, we lose some degree of static typing for such relaxed
composites.

Some extra static typing is obtainable, if we use a repeating choice over all
elements in the content model. (This form of relaxation can be compared with the
notion of prime-type conversion in the XQuery semantics [69].) When mapping
such an ‘artificial’, repeating choice to an object model, we can use the different
element names (say, types of elements) for specialized access to an otherwise
untyped list.

View Nested Content Models in a Flat Manner

For the sake of programming convenience, the schema-derived object types may
‘view’ the XML data as if it was of a very simple shape. Such views are partic-
ularly convenient for queries, but we need to be prepared to encounter update
challenges. Views generally do not relaz in the formal sense of subset order on

Revealing the X/O Impedance Mismatch 335

plusinAndOut = a (b*)"

<xs:element name="plusInAndOut">
<xs:complexType>
<xs:sequence>
<xs:element name="a" type="x"/>
<xs:sequence maxOccurs="unbounded” >
<xs:element name="b" type="y" maxOccurs="unbounded” />
<xs:element name="c" type="z"/>
< [xs:sequence>
< /xs:sequence>
< /xs:complexType>
< /xs:element>

Mapping option: no support for round-tripping

public class plusinAndOut

{

public x a;
public y[] b;
public z[] c;

}

Mapping option: untyped container + typed getters

public class plusinAndOut

{
private enum label {a,b,c};
private List <Pair<label,object>> content;
public x a {get{ ... }set{
public |[Enumerable<y>b { get { ... } set {
public I[Enumerable<z>c { get { ... } set {

o

Fig. 30. Views on content models

tree languages. Here is a simple strategy for devising views on nested composites:
relax choices as sequences, propagate quantifiers (7, +,*) over sequences to the
components, and apply simplifications.

— Relax choices

? ?
e ¢ | RN |en/—\,>el' ERR o

— Propagate quantifiers
o (61 - en)T~rerd - end

— Simplification rules
o 9~ ol

336 R. Lammel and E. Meijer

2% "
e c ~~e

72+ *
e e ~e

e etc.

The propagation rule clearly goes beyond relaxation. (Once we take recurrent
element names into account, the rules become slightly more complicated.) Let
us apply these rules to the most complex pattern in our suite — plusinAndOut:

Content model: plusinAndOut = a (b™ ¢)*
Derived view: ~abtct

Fig.[BUshows two mapping options for the content model plusinAndOut. The class
at the top is the result of simply mapping the derived view to a plain object
type with read/write-enabled fields. (The xsd.exe tool derives this class.) The
grouping of b’s and c¢’s is not maintained in any way, thereby sacrificing round-
tripping.

The class at the bottom of Fig. devises an untyped (private) list to store
all subtrees. For each element name, there is a getter and a setter, whose im-
plementations actually leverage the fact that element names are stored. There
are several challenges related to this approach. First, the mere definition of the
correct semantics for the insertion mode of setters is non-trivial. Second, the
programming model for constructing and updating nested composites is not
straightforward, given that the original grouping for the nested composites is
no longer discoverable. Third, normal type checking is insufficient to guarantee
valid content at all times; hence, some scheme of dynamic checking may be nec-
essary. Fourth, property access to a heterogeneous list is less efficient than field
access for ’'plain (sub)objects’.

4.4 Local Elements

A number of OO languages support ‘nested classes’ of different kinds. However,
nesting is hardly seen as a data-modeling idiom. Nested classes are instead used
for advanced forms of encapsulation and programming with closures. The use
of nested classes is typically discouraged if it only serves for a namespace-like
purpose such as qualification. In contrast, the use of local element declarations
is established at least for XSD.

Fig. B1 shows an XML schema for libraries (say, collections of books) and
corresponding C# classes that were obtained by a nesting-preserving mapping.
Unfortunately, nested classes are inconvenient when used for the construction
of ‘data objects’ because the scoping rules of OO languages do not provide any
shorthand for accessing nested classes. This weakness is illustrated in Fig. 31}
the sample code constructs a single book instance and adds it to a given library
lib; notice the qualiﬁed names library .bookType and library .bookType.authorType.

Hence, it may seem that XML schemas should generally be flattened prior
to the actual X-to-O mapping. There are several problems with this approach.
Most obviously, flattening bears the potential of causing clashes in the global

Revealing the X/O Impedance Mismatch

A nested element declaration

<xs:element name="library” >
<xs:complexType>
<xs:sequence>
<xs:element name="book” minOccurs="0" maxOccurs="unbounded” >
<xs:complexType>
<xs:sequence>
<xs:element name="title” type="xs:string” />
<xs:element name="author” maxOccurs="unbounded”>
<xs:complexType>
<xs:sequence>
<xs:element name="title” type="xs:string” />
<xs:element name="name” type="xs:string” />
< /xs:sequence>
< /xs:complexType>
< /xs:element>
<xs:element name="publisher” type="xs:string” />
<xs:element name="year” type="xs:gYear" />
< /xs:sequence>
< /xs:complexType>
< /xs:element>
< /xs:sequence>
< /xs:complexType>
< /xs:element>

A mapping option that preserves nesting

public class library

public List <bookType> book;
public class bookType

public string title ;
public List <authorType> author;
public string publisher ;
public System.DateTime year;
public class authorType
{

public string title ;

public string name;

Illustration of object construction

lib .book.Add(
new library .bookType {
title = "COBOL Unleashed”,
author = new List<library.bookType.authorType> {

new library .bookType.authorType { name = "Jon Wessler” }

h
publisher = "Macmillan Computer Publishing”,
year = new System.DateTime(1998,9,1) });

Fig. 31. Illustration of mapping for nested element declarations

337

338 R. Lammel and E. Meijer

Typed-oriented flattening (‘Venetian blind’)

<xs:element name="library” >
<xs:complexType>
<xs:sequence>
<xs:element name="book” type="book” minOccurs="0" maxOccurs="unbounded” />
< /xs:sequence>
< /xs:complexType>
< /xs:element>
<xs:complexType name="book” >
<xs:sequence>
<xs:element name="title” type="xs:string” />
<xs:element name="author” type="author” maxOccurs="unbounded” />
<xs:element name="publisher” type="xs:string” />
<xs:element name="year” type="xs:gYear” />
< /xs:sequence>
< /xs:complexType>
<xs:complexType name="author”>
<xs:sequence>
<xs:element name="title” type="xs:string” />
<xs:element name="name" type="xs:string” />
< /xs:sequence>
< /xs:complexType>

Element-oriented flattening (‘Salami slice’)

<xs:element name="library” >
<xs:complexType>
<xs:sequence>
<xs:element ref="book” minOccurs="0" maxOccurs="unbounded” />
< /xs:sequence>
< /xs:complexType>
< /xs:element>
<xs:element name="book">
<xs:complexType>
<xs:sequence>
<xs:element name="title” type="xs:string” />
<xs:element ref="author” maxOccurs="unbounded” />
<xs:element name="publisher” type="xs:string” />
<xs:element name="year” type="xs:gYear” />
< /xs:sequence>
< /xs:complexType>
< /xs:element>
<xs:element name="author”>
<xs:complexType>
<xs:sequence>
<xs:element name="title” type="xs:string” />
<xs:element name="name” type="xs:string” />
< /xs:sequence>
< /xs:complexType>
< /xs:element>

Fig. 32. Flattened schemas for Fig. 3] in two different styles

scope. Also, the promotion of many locals to the global scope may make it more
difficult to comprehend the data model. Furthermore, there is some element of
arbitrariness in so far that there is more than just one flattening method, e.g.:

Revealing the X/O Impedance Mismatch 339

<xs:element name="Iibrary” >
<xs:complexType>
<xs:sequence>
<xs:element ref="book” minOccurs="0" maxOccurs="unbounded” />
< /xs:sequence>
< /xs:complexType>
< /xs:element>
<xs:element name="book" >
<xs:complexType>
<xs:sequence>
<xs:element ref=""title"”/>
<xs:element ref="author” maxOccurs="unbounded” />
<xs:element ref="publisher” />
<xs:element ref="year" />
< /xs:sequence>
< /xs:complexType>
< /xs:element>
<xs:element name="author">
<xs:complexType>
<xs:sequence>
<xs:element ref=""title"”/>
<xs:element ref="name"”/>
< /xs:sequence>
< /xs:complexType>
< /xs:element>
<xs:element name="title” type="xs:string” />
<xs:element name="name” type="xs:string” />
<xs:element name="publisher” type="xs:string” />
<xs:element name="year” type="xs:gYear" />

Fig. 33. Extremely flat style

Extract anonymous complex types of local elements as global type definitions.
Promote local element declarations of complex types to the global scope.
— Promote local element declarations of simple types, too, for uniformity.

Potentially even promote local attribute declarations, for uniformity.

The first two options are illustrated in Fig. The last two options are phrased
as refinements of the second option, and ultimately suggest ‘universal promo-
tion’, which may may appear as the most principled option; cf. Fig. However,
universal promotion, when applied to the library example, causes an ‘ontological
clash’. The original schema comprised two local element declarations with label
name; they were unified in the result, which was possible because the declarations
also agreed on the element type. Reflection reveals that both kinds of names
are different (in an ontological sense)E hence, it it not acceptable to unify the
declarations. To summarize, (universal) promotion cannot be performed, in gen-
eral. This problem also vitally contributes to the overall difficulty to favor a
node-label-preserving mapping because flattening may be needed in preparation
of such a mapping, if we agree that nested object types are inconvenient, as
discussed above. This analysis provides further evidence for the X/O Impedance
Mismatch.

19 We face the title of a book vs. the title of a person. This example is adopted from a related

mailing list discussion: http://xsd.stylusstudio.com/2006Apr/post00002.htm,

http://xsd.stylusstudio.com/2006Apr/post00002.htm

340 R. Lammel and E. Meijer

4.5 Element Templates

When using object models for data representation, we mainly use one form of type
abstraction for data: classes with nominal type equality and explicitly declared
inheritance (subtyping) relationships. The situation for data modeling with XSD
is less homogeneous. There are different kinds of types. XSD’s element declarations
qualify as types in the common sense of programming-language theory. That is,
element declarations (both global and local) denote sets of semantically meaningful
values: certain sets of XML trees. XSD’s (complex) type definitions are not exactly
like types in programming language theory. They seem to be modeling ‘unlabeled
trees’; such values do not really exist. We may think of (complex) type definitions
as incomplete element declarations, say element templates.

One may feel tempted to dismiss such templates as macros for structural types,
but this would be an oversimplification. For instance, the semantically meaning-
ful notion of element substitution (‘inheritance’) is tied to type substitution; cf.
Sec. and Sec. 11

For the record, XSD also comprises attribute-group definitions and model-
group definitions, which we neglect here. Even if we focus on just element dec-
larations and complex-type definitions, one may wonder whether these different
forms of type abstractions must be regarded as an XSD idiosyncrasy. Arguably,
there is a fundamental need for element templates because they enable an impor-
tant form of reuse. To provide another data point, RELAX NG offers so-called
‘named patterns’ that are akin to the complex-type definitions of XSD.

Fig.BAlshows a typical XSD sample that illustrates the reuse value of complex-
type definitions. The address type is used in two positions: billing addresses and
shipping addresses. The exclusive use of element declarations would certainly sim-
plify the devision of X-to-O mappings, but the example suggests that an elimination
of complex types is generally not feasible without prohibitive code duplication.

Fig.B4lalso shows the ‘most obvious’ option for mapping the customer schema.
Both, global element declarations and complex-type definitions are mapped to
classes that look alike, which is troublesome for the following reason. One might
create an Address instance and then expect to be able to serialize it. However,
the class Address is not associated with any element tag. Should we disallow se-
rialization? Should we instead serialize addresses in a special way, as a sort of
XML ‘fragment’? Should we instead use the type name as the element name?
How does the OO programmer comprehend the technical difference between the
different kinds of object types: Address Vs. Customer?

Also, the mapping further illustrates the dubiety of the common, node-label-
omitting mapping. To see this, consider the following code fragment that oper-
ates on the object model of Fig. B4t
var myAddr = new Address();

myAddr.name = "Fred Mueller”,

myAddr.street = "88th NE CT. place”;

var myCust = new customer();

myCust.id = "123456",

myCust. billingAddress = myAddr;

myCust.shippingAddress = myCust.billingAddress; // What’s this?

Revealing the X/O Impedance Mismatch

An XML schema that leverages complex types for reuse

<xs:element name="customer”>
<xs:complexType>
<xs:sequence>
<xs:element name="id" type="xs:string” />
<xs:element name="billingAddress” type="Address” />
<xs:element name="shippingAddress” type="Address” />
< /xs:sequence>
< /xs:complexType>
< /xs:element>
<xs:complexType name="Address” >
<xs:sequence>
<xs:element name="name” type="xs:string” />
<xs:element name="street” type="xs:string” />
< /xs:sequence>
< /xs:complexType>

An illustrative XML instance

<customer>
<id>123456</id>
< billingAddress >
<name>Fred Mueller</name>
<street>88th NE CT. place</street>
</billingAddress >
<shippingAddress>
<name>Fred Mueller</name>
<street>88th NE CT. place</street>
< /shippingAddress>
< /customer>

An obvious mapping option

public class customer {
public string id;
public Address billingAddress ;
public Address shippingAddress;
}
public class Address {
public string name;
public string street ;

}

Fig. 34. Illustration of the reuse aspect for complex types

341

342 R. Lammel and E. Meijer

That is, we assign a billing address to a field for a shipping address. In the original
value domains for the XML addresses, this assignment does not make sense
because we are facing different element names — billingAddress VS. shippingAddress,
i.e., we face different types in the sense of programming-language theory. Hence,
the above code seems to require that the element name billingAddress is replaced
by shippingAddress underneath. It is quite unusual to think of an assignment that
involves a hidden type change.

There is perhaps one way to improve on the indistinguishable mapping of
global element declarations and complex-type definitions. We may ‘de-prioritize’
complex types and map them to interfaces as opposed to classes. These interfaces
may be instrumental in establishing useful type-level relationships (rather than
plain assignability). Here is an interface for the complex type Address:

public interface Address

{
string name { get; set; }
string street { get; set; }

}

Let us illustrate the interface-based scheme. To this end, we assume a node-
label-preserving mapping. There are classes billingAddress and shippingAddress, which
implement the interface Address. Further, these classes provide a copy constructor
using an Address-bounded argument. As a result, the earlier code fragment can be
rewritten as follows2d

var myAddr = new billingAddress();

myAddr.name = "Fred Mueller”,

myAddr.street = "88th NE CT. place”;

var myCust = new customer();

myCust.id = "123456",

myCust. billingAddress = myAddr;
myCust.shippingAddress = new shippingAddress(myAddr);

Hence, we can reuse a given address (say a billing address) in creating another
address (say a shipping address). The use of the copy constructor makes explicit
the conceptual type change that was previously hidden. The approach is not
general: (i) it requires the (uncommon) node-label-preserving mapping; (ii) it
cannot be used in combination with type derivation, as we will discuss in the next
subsection. This failure of an attempted conceptual clean-up provides further
evidence for the X/O Impedance Mismatch.

20 For the record, the shown code rests on the assumption that implicit casts are
available for all element declarations with simple element types. Otherwise, ex-
tra ‘element constructors’ would be needed in the various assignments such as
new name(”Fred Mueller”) instead of ”Fred Mueller”.

Revealing the X/O Impedance Mismatch

An XML schema that involves type derivation

<xs:element name="items” >
<xs:complexType>
<Xxs:sequence>
<xs:element ref="product” minOccurs="0" maxOccurs="unbounded” />
< /xs:sequence>
< /xs:complexType>
< /xs:element>
<xs:element name="product” type="ProductType” />
<xs:complexType name="ProductType" >
<xs:sequence>
<xs:element name="number” type="xs:int”" />
<xs:element name="name” type="xs:string” />
< /xs:sequence>
< /xs:complexType>
<xs:complexType name="5ShirtType” >
<xs:complexContent >
<xs:extension base="ProductType">
<xs:sequence>
<xs:element name="size” type="ShirtSizeType” /> <!—— ShirtSizeType elided ——>
<xs:element name="color” type="ColorType”/> <!—— ColorType elided ——>
< /xs:sequence>
< /xs:extension>
< /xs:complexContent >
< /xs:complexType>

A sample instance exercising type substitution

<items>
<product xsi:type="Shirt Type" >
<number>557< /number>
<name>Short—Sleeved Linen Blouse< /name>
<size>10< /size>
<color value="blue" />
< /product>
< /items>

An obvious mapping option

public class items

{

public List <ProductType> product;

public class ProductType

{

public int number;
public string name;

public class ShirtType : ProductType

{

public ShirtSizeType size ;
public ColorType color;

}

Fig. 35. [llustration of mapping type derivation by extension

343

344 R. Lammel and E. Meijer

4.6 Type Extension

XSD’s type derivation by extension is (intentionally) similar to OO subclassing.
That is, one can define new types by essentially extending other types (referred
to by name). Extended types are substitutable for base types; cf. Fig. BH for an
example To provide another data point, RELAX NG does not provide such
linguistic support, but one can still use a combination of ‘design patterns’ and
annotations to effectively model the same kind of relationship [G9I60].

The interface-oriented mapping rule of the previous section falls short for types
that engage in type derivation (except for a special case that we will identify
in Sec. [£7). Classes are needed for derived complex types and their base types
because we must be able to construct objects of all the types corresponding to the
different members in the derivation hierarchy. For instance, in the example, there
is just one root element, product, which can be of two different types, ProductType
and ShirtType.

Hence we must be prepared to designate classes both to element declarations
and complex-type definitions. A sensible optimization comes to mind. We may
attempt to omit classes for element declarations with a nominal element type,
namely, when the nominal element type implies the element name and all derived
types imply the same element name. Consider again the schema in Fig. product
elements are of type ProductType Or ShirtType, and there are no other elements of
these types. Hence no designated class is needed for the root product. (Indeed, the
xsd.exe tool maps the schema in this manner.)

We cannot apply this optimization, when there are multiple (global) element
declarations referring to the same element type (or to types related to each other
by type derivation). Hence, we have to accept ultimately that both element
declarations and complex-type definitions are mapped to classes — except for
some special cases, if we are willing to cater for exceptions. As a last attempt
of restoring some discipline (that helps avoiding confusions between element
declarations and complex-type definitions), we may assume two different base
types for schema-derived classes, thereby replacing the implicit base class object,
used until now:

— XLabeled — Base class for element declarations.
— XUnlabeled — Base class for complex-type definitions.

This discipline provides a bit of discoverability. Also, we may assume that only
subclasses of XLabeled implement the general de-/serialization protocol, thereby
avoiding accidental uses of complex types for serialization.

Global element declarations with nominal element types are mapped accord-
ing to a ‘wrapper scheme’ that reflects the fact that the wrapper only provides
the element name while the wrappee provides all the actual ‘structure’, i.e.,
children and attributes; cf. Fig for an illustration. The constructor of the

21 A note on XSD: Notice the attribute xsi:type="ShirtType’ in the sample instance. In
this manner, validation is informed to expect the derived type in place of the base

type.

Revealing the X/O Impedance Mismatch 345

public class product : XLabeled

{

public product() { content=new ProductType(); }
public product(ProductType Content) { content=Content; }
public ProductType Content { get { return content; }}

public int number {
get { return Content.number; }
set { Content.number = value; }

}

public string name {
get { return Content.name; }
set { Content.name = value; }

}

private ProductType content;

}

Fig. 36. Mapping roots with nominal element types

wrapper class takes a wrappee. The interface of the base type of the wrappee is
re-implemented by the wrapper type (through forwarding).

Let us investigate the convenience and clarity of the resulting programming
model. To this end, we revisit the example for populating two addresses (billing
vs. shipping) based on elements of the same nominal type for addresses. In the
following code fragment, we attempt to reuse an address object:

var myAddr = new Address();

myAddr.name = "Fred Mueller”;

myAddr.street = "88th NE CT. place”;

var myCust = new customer();

myCust.id = "123456";

myCust. billingAddress = new billingAddress (myAddr);
myCust.shippingAddress = new shippingAddress(myAddr);

Hence, we pass the ‘unlabeled object’ myAddr to the wrapping constructors for the
labeled types of billing and shipping addresses. One may wonder what exactly the
semantics of the wrapping constructors should be. We recall that the interface-
based mapping of the previous subsection assumed a copy constructor taking a
labeled object and creating a labeled object. A plain copy semantics does not
seem to be appropriate for the wrapping constructors because this would imply
that ‘unlabeled objects’ are never integrated into object graphs, as is. A ‘no-
op’ semantics, i.e., wrapping ‘unlabeled objects’ any number of times, does not
seem to be appropriate either because it could never meet the tree invariant for
XML. An alternative semantics would then be to ‘parent’ unlabeled objects when

346 R. Lammel and E. Meijer

they are used for the first time, and to copy (clone) them from there on. This
discussion leaves a bad aftertaste, and hence, provides further evidence for the
X /0O Impedance Mismatch.

4.7 Element Substitution

In XSD, element declarations can engage in so-called substitution groups, thereby
providing a form of substitutability for elements. (RELAX NG would again lever-
age ‘design patterns’ to this end [59J60].) As a simple illustration of substitution
groups, let us add an element declaration to the earlier schema for products in
Fig.

<xs:element name="shirt” type="Shirt Type" substitutionGroup="product” />

As a result, there are the following associations:

FElement name Nominal element type
product ProductType
shirt ShirtType

According to the rules of XSD, all members of a substitution group, except for
leafs, must be of a nominal element type. In practice, this implies that every
‘concept’ (such as the concept of ‘shirts’) gives rise to two schema abstractions;
cf. the element declaration shirt and the complex-type definition shirtType. One
may expect a form of element substitution that does not rely on nominal element

types.
There are the following mapping options for substitution groups:

— The wrapping option: Based on the discussion in Sec. .Gl we map the mem-
bers of the substitution group (which are element declarations with a nominal
element type) to wrapper types on the object types for the element types.
Both the wrapper and the wrappee classes engage in class inheritance.

— The choice option: We inline each reference to the head of a substitution
group as a choice over all of its members; cf. Fig. B7l Thereby, we effectively
eliminate the use of substitution groups. The members of a substitution
group are still to be mapped to wrapper classes, but subclassing is restricted
to unlabeled object types.

— The normalization option: If the element types of substitution-group mem-
bers are not used elsewhere in the schema, and if there is one member per
possible type (in the type-derivation hierarchy), then we can potentially omit
the object types for the type-derivation hierarchy and map the substitution
groups to a plain class hierarchy; cf. Fig. B8 for an illustration.

With the first option, the OO programmer may ‘get lost’ in the two parallel class
hierarchies. With the second option, the OO programmer may be overwhelmed
by extra-large choices. Both options transport the ‘doubled” number of schema

Revealing the X/O Impedance Mismatch 347

The XML schema with a substitution group

<xs:element name="items" >
<xs:complexType>
<Xxs:sequence>
<xs:element ref="product” minOccurs="0" maxOccurs="unbounded” />
< /xs:sequence>
< /xs:complexType>
< /xs:element>
<xs:element name="product” type="ProductType" />
<xs:element name="shirt” type="Shirt Type" substitutionGroup="product” />

The substitution group inlined as choice

<xs:element name="items” >
<xs:complexType>
<Xxs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded” >
<xs:element ref="product”/>
<xs:element ref="shirt" />
< /xs:choice>
< /xs:sequence>
< /xs:complexType>
< /xs:element>
<xs:element name="product” type="ProductType” />
<xs:element name="shirt” type="ShirtType" />

Fig. 37. Map substitution groups as choices

abstractions to the object model, thereby becoming unpalatable. The third op-
tion would lead to a concise object model, but its applicability is subject to
preconditions. Also it takes away (subtle) options for content construction, as
illustrated by the following sample data:

<items>

<product xsi:type="ShirtType”"> ... content elided ... </product>
<shirt> ... content elided ... </shirt>
< /items>

That is, the collection comprises two shirts; the first one (<product xsi:type="ShirtType" >
...) exploits type substitution; the second one (<shirt> ...) exploits element sub-
stitution. The normalized object model of Fig. B8 cannot easily differentiate these
two kinds of shirts along construction and observation.

Further, the normalization option is challenged by a naming issue: should
we prioritize element names over type names, or vice versa? We would like to
adopt the element names as class names (because element declarations may
count as the primary form of XML types). However, we must adopt the type
names as class names, as soon as the type-derivation hierarchy makes more type
distinctions than the associated substitution group for elements. Likewise, we
must adopt the element names, as soon as the substitution group makes more
type distinctions. Hence, a relatively small change (such as the addition of one

348 R. Lammel and E. Meijer

Mapping option: prefer element declarations over type definitions

public class product

{

public int number;
public string name;

public class shirt : product

{

public ShirtSizeType size ;
public ColorType color;

}

Mapping option: prefer type definitions over element declarations

public class ProductType

{

public int number;
public string name;

public class ShirtType : ProductType

{

public ShirtSizeType size ;
public ColorType color;

}

Fig. 38. lllustration of mapping for substitution groups

global schema component) may trigger a different naming scheme for the entire
schema.

4.8 Type Restriction

XSD provides another form of type derivation — by restriction. We will focus
here on restriction for complex types, and defer the coverage of simple types to
the next subsection. Restricted types may be used in type substitution (‘xsi:type’)
in the same manner as extended types. The typical OO language has no coun-
terpart for type derivation by restriction. In an effort to at least preserve XSD’s
substitutability, we suggest to map restriction relationships again to class inher-
itance, just as we did for extension relationships. It remains to further justify
this mapping rule.

Fig. shows a contrived example that demonstrates principled forms of
complex-type restriction by a derivation chain foo, bar and abc. In the deriva-
tion of bar from foo, an optional particle is eliminated. In the derivation of abc
from bar, the element type of a particle is restricted to a subtype.

Revealing the X/O Impedance Mismatch 349

<xs:complexType name="foo">
<xs:sequence>
<xs:element name="x" type="foo” minOccurs="0"/>
<xs:element name="y" type="foo" />
< /xs:sequence>
< /xs:complexType>
<xs:complexType name="bar">
<xs:complexContent>
<xs: restriction base="foo">
<Xxs:sequence>
<!—— Optional ”z” dropped out. ——>
<xs:element name="y" type="foo" />
< /xs:sequence>
< /xs: restriction >
< /xs:complexContent>
< /xs:complexType>
<xs:complexType name="abc”">
<xs:complexContent>
<xs: restriction base="bar">
<xs:sequence>
<!—— Require subtype for "y”. ——>
<xs:element name="y" type="bar" />
< /xs:sequence>
< /xs: restriction >
< /xs:complexContent>
< /xs:complexType>

Fig. 39. Illustration of complex-type derivation by restriction

There is the following scale for mapping restricted types to classes:

Just inherit the base class without any change; neglect restrictions.
Enforce restrictions when validation is requested for an object.
Enforce some restrictions as invariants based on dynamic checks.
Enforce some restrictions by means of the static type system.

= o=

Fig. 40 shows a mapping option where the restrictions are enforced by dynam-
ically checked setters. (Depending on mapping rules and schema patterns, dy-
namic checks may also be required for getters.) Suppose we would want to en-
force the restrictions by means of the static type system. In the derivation of
bar, we would need to remove a member. Member removal is unsupported by
several mainstream OO languages (including C#), and it is a controversial ca-
pability anyhow. In the derivation of abe, we would need to co-variantly modify
the argument type of a setter. Covariance for arguments is unsupported by most
mainstream OO languages (including C#), and it is a controversial capability
because of the difficulty to reconcile static type safety.

350 R. Lammel and E. Meijer

public class foo

{
public virtual foo x { get { return x; } set { x =value; } }
public virtual fooy { get { return y; } set { y =value; } }
private foo x;
private foo vy;

}
public class bar : foo
{
public override foo x { set { Trace.Assert(value==null); base.x = value; }}
}
public class abc : bar
{

public override foo y { set { Trace.Assert(value is bar); base.y = value; }}

}

Fig. 40. A mapping option for complex-type derivation by restriction

The use of class inheritance for restriction relationships may be said to sys-
tematically violate the substitution principle [36]. The problem is that subclass
setters are constrained by stronger preconditions than the base-class setters.
This situation is reminiscent of ‘cheating servers’ [43], which are in conflict with
behavior-preserving subtyping and design-by-contract (DBC). We may adopt a
mitigation technique that is also offered in the DBC literature. That is, we may
take the view that restriction conditions are instance parameters in a sense. To
this end, the object model anticipates ‘variable’ restriction conditions in sepa-
rate, virtual, Boolean methods — one per property. A restricted subclass may
then override the restriction condition. Fig. H] illustrates this ‘trick’ for the
running example.

4.9 Simple Types

Up to now, we used built-in simple types, which we mapped to a fixed set of prim-
itive programming-language types such as striing and double for C#. XSD also pro-
vides list types and union types, which we neglect here for brevity. Further, XSD
provides type derivation by restriction for simple types, which we will discuss now.

Fig. @2 illustrates several mapping options for simple types when type deriva-
tion by restriction is involved. The first option assumes that all simple types
(including the derived ones) are mapped to primitive types of the programming
language at hand. In fact, a restricted type is mapped to the same type as its
base type. In the sample schema in the figure, there is the restricted type uint42
with xs:unsignedint as its base type. Both are mapped to C#’s type uint.

As a first enhancement, we may transport restrictions as dynamic checks into
the object model; cf. the second mapping option in Fig. The use of dy-
namic checks is similar to the treatment of minOccurs/maxOccurs constraints

Revealing the X/O Impedance Mismatch 351

public class foo

{
// Boolean conditions for wirtual contracts
protected virtual bool xValid(foo x) { return true; }
protected virtual bool yValid(foo y) { return true; }
// State access with dynamically checked properties
public virtual foo x {
get { Trace.Assert(xValid(x)); return x; }
set { Trace.Assert(xValid(value)); x = value; }
}
public virtual foo y {
get { Trace.Assert(yValid(y)); return vy; }
set { Trace.Assert(yValid(value)); y = value; }
}
private foo x;
private foo vy;
}
public class bar : foo
{
protected override bool xValid(foo x) {
return base.xValid(x) && x == null;
}
}
public class abc : bar
{
protected override bool yValid(foo y) {
return base.yValid(y) && vy is bar;
}
}

Fig. 41. More DBC-compliant, restriction-ready object types

and complex-type restrictions, as discussed earlier. In particular, setters are con-
strained by preconditions that model the schema restrictions.

As a second enhancement, we may designate object types (or struct types)
to nominally defined simple types. Such a mapping option is motivated by the
insight that even simple types may serve an important role in program com-
prehension and software evolution [19]. Also, the use of designated types would
enable static type checking to guarantee that a value of a given restricted type
does indeed meet the restrictions, thereby making repeated dynamic checks un-
necessary.

The use of struct types (as opposed to classes) may be particularly attractive
because struct types are potentially exempt from charges (subject to compiler

352 R. Lammel and E. Meijer

An XML schema with a simple-type restriction

<xs:simpleType name="uint42">
<xs: restriction base="xs:unsignedInt” >
<xs:maxInclusive value="42"/>
< /xs: restriction >
< /xs:simpleType>
<xs:element name="simples” >
<xs:complexType>
<xs:sequence>
<xs:element name="anUint” type="xs:unsignedint”/> <!—— unrestricted type ——>
<xs:element name="anUint42" type="uint42" /> <I—— restricted type ——>
< /xs:sequence>
< /xs:complexType>
< /xs:element>

Mapping option: replace derived types by their base types

public class simples

public uint anUint;
public uint anUint42;

Mapping option: enforce restrictions by dynamic checks

public class simples
{
public uint anUint {
get { return anUint; }
set { anUint = value; } }
public uint anUint42 {
get { return anUint42; }
set { Trace.Assert(value<=42); anUint42 = value; } }
private uint anUint;
private uint anUint42;

Mapping option: structs designated to simple-type definitions

public struct uint42

public static implicit operator uint42(uint it) {
Trace. Assert (it <=42); return new uint42 { value =it };

public static implicit operator uint(uint42 it) {
return it .value;
}

private uint value;
public class simples

public uint anUint;
public uint42 anUint42;

Fig. 42. Lossy mappings for simple types

Revealing the X/O Impedance Mismatch

Schema-derived classes

public class uint42 : XsUnsignedInt

{

public static implicit operator uint42(uint it) {
Trace. Assert (it <=42);
return new uint42 { value =it };

}

public static implicit operator uint(uint42 it) {
return (uint) it .value;

}

}

public class simples

{

public XsUnsignedInt anUint;
public uint42 anUint42;

Predefined classes for XSD’s built-in simple types

// Base class of all simple types
public abstract class XsAnySimpleType

{
}

protected object value;

// The counterpart for zs:unsignedInt
public class XsUnsignedInt : XsUnsignedLong

{
public static implicit operator XsUnsignedInt(uint it) {
return new XsUnsignedint { value =it };
}

public static implicit operator uint(XsUnsignedInt it) {
return (uint) it .value;
}

}

// Other simple types, likewise

public class XsUnsignedLong : XsNonNegativelnteger { }
public class XsNonNegativelnteger : XsInteger }
public class XsInteger : XsDecimal { }
public class XsDecimal : XsAnySimpleType { }

Fig. 43. Mapping simple types to a designated class hierarchy

353

354 R. Lammel and E. Meijer

optimizations) — if they only wrap a single component. The structs-based map-
ping option is illustrated at the bottom of Fig. We use implicit casts for
both directions of mediating between the struct type for the simple type and
the associated primitive type. The restriction is only checked when a value of
the restricted type is constructed. Unfortunately, a structs-based mapping does
not enable proper substitution for simple types (because there is no subtyping
for struct types). Consider the following XML data, which exercises simple-type
substitution for the first child element labeled anUint:

<simples xmlns: xsi="http://www.w3.0rg/2001/XMLSchema—instance”>
<anUint xsi:type="uint42">41< /anUint>
<anUint42>41</anUint42>

< /simples>

The property for the anUint element is of type uint (or perhaps of a designated
struct type for xs: unsignedint, if we decide to designate struct types for all of XSD’s
built-in simple types). Hence, the getter (based on a structs-based mapping)
would never report the status of the datum to be of the restricted type uint42.

Fig. makes the next step by designating wrapper classes to simple types.
There are also predefined classes for XSD’s built-in simple types so that XSD’s
substitutability can be preserved completely. Clearly, this approach is quite
costly because of ‘boxing’ (cf. the field of type object in XsAnySimpleType) and wrap-
ping (due to the use of classes). Also, the programming convenience is arguably
impaired because OO programmers may prefer object models that leverage the
familiar primitive types of their OO language (as opposed to the XSD types).
One may provide implicit casts so that the objects of a ‘simple-type class’ can
be used whenever the associated primitive type is expected, but the resulting
hybrid may be difficult to comprehend by the programmer. To summarize, there
is no fully satisfactory simple-type mapping. This circumstance also provides
further evidence for the X/O Impedance Mismatch.

5 Concluding Remarks

The X/O Impedance Mismatch has to be primarily attributed to fundamental
differences in the data models for XML and objects. The data models are so much
different that the expectation of using ‘plain objects’ for the typed representation
of XML trees should be internationally condemned. It appears that the X/O
Impedance Mismatch must also be attributed to differences in the type systems
(the type languages) for XML and objects. However, it is important to note
that the differences in type systems are largely implied by the underlying data
models. Finally, the complexity of XSD and its freewheeling use in the wild add
considerably to the severity of the X/O Impedance Mismatch.

The work reported in this paper clearly substantiates that a full resolution
of the X/O Impedance Mismatch is fundamentally impossible. The optimistic
(more pragmatic) interpretation of our work is that the understanding of (canoni-
cal) X-to-O mappings has matured, and hence, more ambitious X-to-O mappings

Revealing the X/O Impedance Mismatch 355

are in reach such that XML semantics and schema constraints are better pre-
served by the resulting object models, while also hiding the complexities and
idiosyncrasies of XML and XSD — to some extent. More ambitious X-to-O
mappings buy us time until something simpler than the current standards (XML
1.0/1.14XSD 1.0/1.1) emerges. The pessimistic (more intellectual) interpreta-
tion of our work is that (canonical) X-to-O mappings remain hacks (and XSD
is by far too complicated), no matter what, and hence a famous comment by
Dijsktra (originally advised for Cobol) comes to mind [I6]: “you can really do
only one of two things: fight the disease or pretend that it does not exist”.

Acknowledgments. The authors acknowledge interactions with Umut Alev, Brian
Beckmann, Sergey Dubinets, Priya Lakshminarayanan, Chris Lovett, Sergey
Melnik, Dave Remy, Dan Rogers, Mark Shields, Huseyin Ulger, and Eugene
Veselov. More generally, the authors have benefited from countless discussions
with members of the Data Programmability team and further individuals at
Microsoft.

References

1. Amer-Yahia, S., Du, F., Freire, J.: A comprehensive solution to the XMIL-to-
relational mapping problem. In: Laender, A.H.F., Lee, D., Ronthaler, M. (eds.)
Proceedings of 6th ACM CIKM International Workshop on Web Information and
Data Management (WIDM’04), pp. 31-38. ACM Press, New York (2004)

2. Atanassow, F., Clarke, D., Jeuring, J.: UUXML: A Type-Preserving XML Schema-
Haskell Data Binding. In: Jayaraman, B. (ed.) PADL 2004. LNCS, vol. 3057, pp.
71-85. Springer, Heidelberg (2004)

3. Baars, A.L., Loh, A., Swierstra, S.D.: Parsing permutation phrases. Journal of
Functional Programming 14(6), 635-646 (2004)

4. Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Transac-
tions on Database Systems 6(4), 557-575 (1981)

5. Bau, D.: The Design of XMLBeans (2003), Parts 1-3:
http://davidbau.com/archives/2003/11/14/the design of xmlbeans part 1.html;
http://davidbau.com/archives/2003/11/19/the design of xmlbeans part 2.html;
http://davidbau.com/archives/2003/12/18/the design of xmlbeans part 3.html.

6. Bierman, G., Meijer, E., Schulte, W.: The Essence of Data Access in Cw. In: Black,
A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 287-311. Springer, Heidelberg (2005)

7. Bohannon, P., Freire, J., Haritsa, J.R., Ramanath, M., Roy, P., Siméon, J.: Bridg-
ing the XML Relational Divide with LegoDB. In: Dayal, U., Ramamritham, K.,
Vijayaraman, T.M. (eds.) Proceedings of 19th International Conference on Data
Engineering (ICDE’03), pp. 759-760. IEEE Computer Society Press, Los Alamitos
(2003)

8. Bohannon, P., Freire, J., Roy, P., Simeon, J.: From XML Schema to Relations:
A Cost-Based Approach to XML Storage. In: Proceedings of 18th International
Conference on Data Engineering (ICDE’02), p. 64. IEEE Computer Society Press,
Los Alamitos (2002)

9. Bordawekar, R., Burke, M.G., Peshansky, 1., Raghavachari, M.: XJ: Integration of
XML Processing into Java. In: Castagna, Raghavachari

http://davidbau.com/archives/2003/11/14/the_design_of_xmlbeans_part_1.h tml
http://davidbau.com/archives/2003/11/19/the_design_of_xmlbeans_part_2.h tml
http://davidbau.com/archives/2003/12/18/the_design_of_xmlbeans_part_3.h tml

356

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.
28.
29.
30.

31.

R. Lammel and E. Meijer

Bourret, R.:. Mapping W3C Schemas to Object Schemas (March 2001),
http://www.rpbourret.com/xml/SchemaMap.htm

Bourret, R.: XML Data Binding Resources (2007), http://www.rpbourret.
com/xml/XMLDataBinding.htm

Burton, F., Cameron, R.: Pattern Matching with Abstract Data Types. Journal of
Functional Programming 3(2), 171-190 (1993)

Cameron, R.D.: Extending context-free grammars with permutation phrases. ACM
Letters on Programming Language Systems 2(1-4), 85-94 (1993)

Castagna, G., Raghavachari, M. (eds.) PLAN-X 2006 Informal Proceedings,
Charleston, South Carolina, January 14, 2006. BRICS, Department of Computer
Science, University of Aarhus (2006)

Crocker, R., Stele Jr., G.L.: Proceedings of the 2003 ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages and Applications, OOP-
SLA’03. ACM Press, New York (2003)

Dijkstra, E.W.: EWD 498: How do we tell truths that might hurt? In: Selected
Writings on Computing: A Personal Perspective, pp. 129-131. Springer, Heidelberg
(1992)

Downey, P.: W3C XML Schema Patterns for Databinding. In: Conference Proceed-
ings XML’06 (2006)

Fahndrich, M., Leino, K.R.M.: Declaring and checking non-null types in an object-
oriented language. In: Crocker and Jr. [15], pp. 302-312

Fowler, M.: When to Make a Type. IEEE Software, 12-13 (2003)

Gapeyev, V., Garillot, F., Pierce, B.C.: Statically Typed Document Transforma-
tion: An Xtatic Experience. In: Castagna and Raghavachari [14], pp. 2-13
Gapeyev, V., Levin, M.Y., Pierce, B.C., Schmitt, A.: XML Goes Native: Run-
Time Representations for Xtatic. In: Bodik, R. (ed.) CC 2005. LNCS, vol. 3443,
pp. 43-58. Springer, Heidelberg (2005)

Gapeyev, V., Pierce, B.C.: Regular Object Types. In: Cardelli, L. (ed.) ECOOP
2003. LNCS, vol. 2743, pp. 151-175. Springer, Heidelberg (2003)

Garcia, R., Jarvi, J., Lumsdaine, A., Siek, J.G., Willcock, J.: A comparative study
of language support for generic programming. In: Crocker and Jr. [15], pp. 115-134
Gottlob, G., Paolini, P., Zicari, R.: Properties and update semantics of consistent
views. ACM Transactions on Database Systems 13(4), 486-524 (1988)

Harren, M., Raghavachari, M., Shmueli, O., Burke, M.G., Bordawekar, R.,
Pechtchanski, 1., Sarkar, V.: XJ: facilitating XML processing in Java. In: Ellis,
A., Hagino, T. (eds.) WWW’05, 14th International Conference on World Wide
Web, Proceedings, pp. 278-287. ACM Press, New York (2005)

Harren, M., Raghavachari, M., Shmueli, O., Burke, M.G., Sarkar, V., Bordawekar,
R.: XJ: integration of XML processing into java. In: Feldman, S.I., Uretsky, M.,
Najork, M., Wills, C.E. (eds.) WWW’04, 13th International Conference on World
Wide Web, Proceedings, pp. 340-341. ACM Press, New York (2004)

Hosoya, H., Pierce, B.C.: XDuce: A statically typed XML processing language.
ACM Transactions on Internet Technology (TOIT) 3(2), 117-148 (2003)

IBM Research. XJ (2005), http://www.research.ibm.com/xj/

jsonJSON.org. Introducing JSON, 2006. Web site, http://www.json.org/\
Kirkegaard, C., Mgller, A.: Type Checking with XML Schema in XACT. In:
Castagna and Raghavachari [14], pp. 14-23

Kostoulas, M.G., Matsa, M., Mendelsohn, N., Perkins, E., Heifets, A., Mercaldi,
M.: XML screamer: an integrated approach to high performance XML parsing, val-
idation and deserialization. In: WWW?’06, 15th International Conference on World
Wide Web, Proceedings, pp. 93-102. ACM Press, New York (2006)

http://www.rpbourret.com/xml/SchemaMap.htm
protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www.rpbourret.com/xml/XMLDataBinding.htm
protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www.rpbourret.com/xml/XMLDataBinding.htm
http://www.research.ibm.com/xj/
http://www.json.org/

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Revealing the X/O Impedance Mismatch 357

Lammel, R., Kitsis, S., Remy, D.: Analysis of XML schema usage. In: Conference
Proceedings XML’05 (2005)

Lammel, R., Remy, D.: Functional OO Programming with Triangular Circles. In:
Conference Proceedings XML’06 (2006)

Lammel, R., Visser, E., Visser, J.: Strategic Programming Meets Adaptive Pro-
gramming. In: AOSD’03, 2nd International Conference on Aspect-Oriented Soft-
ware Development, Proceedings, pp. 168-177. ACM Press, New York (2003)
Lieberherr, K.: Adaptive Object-Oriented Software: The Demeter Method with
Propagation Patterns. PWS Publishing Company, Boston (1996)

Liskov, B.: Keynote address - data abstraction and hierarchy. In: OOPSLA’87, Ad-
dendum to the Proceedings on Object-Oriented Programming Systems, Languages
and Applications, pp. 17-34. ACM Press, New York (1987)

Loughran, S., Smith, E.: Rethinking the Java SOAP Stack. Technical Report HPL-
2005-83, 20050517, External, HP Labs (2005)

McLaughlin, B.: Java and XML data binding. Nutshell handbook. O’Reilly & As-
sociates, Inc., (2002)

Meijer, E., Beckman, B.: XLINQ: XML Programming Refactored (The Return Of
The Monoids). In: Conference Proceedings XML’05, See [46] for the LINQ portal.
XLing is now called LINQ to XML (November 2005)

Meijer, E., Beckman, B.: XML Support in Visual Basic 9. In: Castagna and
Raghavachari [14], p. 86

Meijer, E., Schulte, W., Bierman, G.: Programming with Circles, Triangles and
Rectangles. In: Conference Proceedings XMIL’03 (2003)

Meijer, E., Schulte, W., Bierman, G.: Unifying Tables, Objects and Documents. In:
Proceedings of Declarative Programming in the Context of OO Languages (DP-
COOL) (2003)

Meyer, B.: Object-Oriented Software Construction, 2nd edn. The Object-Oriented
Series. Prentice-Hall, Englewood Cliffs (1997)

Microsoft Corp. LINQ to XML Overview, See [46], for the LINQ portal. LINQ to
XML was formerly called XLing (2005-2007)

Microsoft Corp. C# Version 3.0 Specification, See [46] for the LINQ portal (2006—
2007)

Microsoft Corp. The LINQ Project, (2006-2007), http://msdn.microsoft.com/
netframework/future/ling/

Microsoft ~ Corp. Windows Communication Foundation (2006-2007),
http://windowscommunication.net/

Novak Jr, G.S.: Creation of views for reuse of software with different data repre-
sentations. IEEE Transactions on Software Engineering 21(12), 993-1005 (1995)
OASIS. RELAX NG Specification (December 2001), http://www.oasis-open.
org/committees/relax-ng/spec-20011203.html

Onizuka, M., Chan, F.Y., Michigami, R., Honishi, T.: Incremental maintenance
for materialized XPath/XSLT views. In: WWW ’05: Proceedings of the 14th In-
ternational Conference on World Wide Web, pp. 671-681. ACM Press, New York
(2005)

Perkins, E., Matsa, M., Kostoulas, M.G., Heifets, A., Mendelsohn, N.: Generation
of efficient parsers through direct compilation of XML Schema grammars. IBM
Systems Journal 45(2), 225-244 (2006)

Pradhan, M.: Default mapping for annotated XML schema. IBM develop-
erWorks (April 2006), http://www-128.ibm.com/developerworks/db2/library/
techarticle/dm-0604priadhan2/

protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update http://msdn.microsoft.com/netframework/future/linq/
protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://msdn.microsoft.com/netframework/future/linq/
http://windowscommunication.net/
protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0604pr%adhan2/
protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0604pr%adhan2/

358 R. Lammel and E. Meijer

53. Shields, M., Meijer, E.: Type-indexed rows. In: POPL’01: 28th ACM SIGPLAN-
SIGACT Symposium on Principles Of Programming Languages, Proceedings, pp.
261-275. ACM Press, New York (2001)

54. Sun Microsystems. The Java architecture for XML binding (JAXB) (2006),
http://java.sun.com/webservices/jaxb/.

55. The Apache XML Project. XMLBeans (2006), http://xmlbeans.apache.org/

56. Thiemann, P.: Modeling HTML in haskell. In: Pontelli, E., Costa, V.S (eds.) PADL
2000. LNCS, vol. 1753, pp. 263-277. Springer, Heidelberg (2000)

57. Thiemann, P.: A typed representation for HTML and XML documents in Haskell.
Journal of Functional Programming 12(4&5), 435-468 (2002)

58. Thomas, D.: The Impedance Imperative: Tuples + Objects + Infosets = Too Much
Stuff! Journal of Object Technology 2(5), 7-12 (2003)

59. van der Vlist, E.: RELAX NG. O’Reilly (December 2004)

60. van der Vlist, E.. RELAX NG and W3C XML Schema com-
pared (continued) (July 2006), |http://eric.van-der-vlist.com/blog/
2814 RELAX NG and W3C XML Schema com pared (continued).item

61. van Engelen, R., Govindaraju, M., Zhang, W.: Exploring Remote Object Coherence
in XML Web Services. In: ICWS’06, International Conference on WebServices,
Proceedings, pp. 249-256. IEEE Computer Society, Los Alamitos (2006)

62. Vinoski, S.: RPC Under Fire. IEEE Internet Computing 9(5), 93-95 (2005)

63. Visser, J.: Visitor combination and traversal control. ACM SIGPLAN No-
tices 36(11), 270-282 (2001) (OPSLA 2001 Conference Proceedings)

64. W3C. Document Object Model (DOM) (1997-2003), http://www.w3.org/DOM/

65. W3C. XML Path Language (XPath), Version 1.0, W3C Recommendation (Novem-
ber 16, 1999) http://www.w3.org/TR/xpath

66. W3C. XML Information Set (2nd edn.) (1999-2004) http://www.w3.org/TR/
xml-infoset/

67. W3C. XML Schema, (2000-2003), http://www.w3.org/XML/Schema

68. W3C. Extensible Markup Language (XML) 1.0 (3rd edn.,) W3C Recommendation,
(February 2004), http://www.w3.org/TR/2004/REC-xm1-20040204/

69. W3C. XQuery 1.0 and XPath 2.0 Formal Semantics, W3C Candidate Recommen-
dation, (June 8, 2006), http://www.w3.org/TR/xquery-semantics/

70. Wadler, P.: Views: a way for pattern matching to cohabit with data abstraction.
In: POPL’87, 14th ACM SIGACT-SIGPLAN Symposium on Principles Of Pro-
gramming Languages, Proceedings, pp. 307-313. ACM Press, New York (1987)

71. Wallace, M., Runciman, C.: Haskell and XML: Generic combinators or type-based
translation? ACM SIGPLAN Notices 34(9), 148-159 (1999) (Conference Proceed-
ings of International Conference on Functional Programming (ICFP’99))

A Extreme Mapping Options

This appendix illustrates some mapping options that work hard to convey schema
constraints into the derived object models. Arguably, the options are too com-
plicated for practical use.

A.1 Type-Driven Member Access

Sec. B clarified that element references do not faithfully correspond to OO
member names, and concluded that a type-driven access protocol may be more

http://java.sun.com/webservices/jaxb/
http://xmlbeans.apache.org/
protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://eric.van-der-vlist.com/blog/2814_RELAX_NG_and_W3C_XML_Schema_com pared_(continued).item
protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://eric.van-der-vlist.com/blog/2814_RELAX_NG_and_W3C_XML_Schema_com pared_(continued).item
http://www.w3.org/DOM/
http://www.w3.org/TR/xpath
protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www.w3.org/TR/xml-infoset/
protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www.w3.org/TR/xml-infoset/
http://www.w3.org/XML/Schema
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/xquery-semantics/

Revealing the X/O Impedance Mismatch 359

appropriate. In fact, we may use the types of children as (ambiguous) selectors,
thereby mimicking the XPath model. To get started, we assume a mapping as
follows:

— Map XSD namespaces to .NET namespaces in a 1:1 manner 22
— Map element declarations to classes in a 1:1 manner.
— Use a node-label-preserving mapping; cf. Sec.

The last item is important because it guarantees that the resulting object types
preserve all type distinctions (read as ‘element-label distinctions’) that are pre-
scribed by the original schema. That is, the object types are sufficient for type-
driven access.

A type-driven replacement of “.” requires access operations for ‘getting’ and
‘setting’. We use overloaded methods to this end; the overloads cover all possible
types of children. The setter part is straightforward. For instance, the illustrative
model group from Sec. B (recalled below) requires the following overloads:

<!—— The relevant model group ——>
<xs:sequence>

<xs:element ref="tns:bar” />
<xs:element name="bar" type="xs:int" />
<xs:element ref="ins:bar"/>

< /xs:sequence>

// The overloaded setter method

public void Set(tns.bar x) { 1=x; } // <ins:bar>
public void Set(bar x) { 2=x;} // local <bar>
public void Set(ins.bar x) { 3=x; } // <ins:bar>

// The underlying state

private tns.bar 1;

private bar 2; // bar is a local type
private ins.bar 3;

(Repeating and optional particles require a special treatment, which we do not
discuss here.) The getter part requires more work. We may attempt an over-
loaded getter method such that the overloads vary in the result type. However,
mainstream languages like Java and C# do not support such overloading. We
may also attempt to set up the getter method with a type parameter (in the
sense of generics). However, (bounded) parametric polymorphism would make
the getter method too polymorphic; essentially, type checking would be unable
to separate legal types of children from arbitrary schema-derived object types.
Hence, we need to parameterize the getter method such that an argument type
can drive access. However, we can not (and do not want to) pass a value of the
type for which the getter is supposed to return a value. Instead, we pass a proxy
for the type. Here is a generic class of proxies:

22 A note on .NET: a namespace is essentially a scope for declarations of classes, inter-
faces, and others. It is very similar to package or module scopes in other languages.

360 R. Lammel and E. Meijer

public class Proxy<X>

{

protected Proxy() { }
public static Proxy<X> proxy { get { return null; } }

}

The type parameter x of Proxy is a ‘phantom’, i.e., it is not used by the class; it is
only needed for fabricating distinctive types — one for each type of children. We
do not even need to populate any type Proxy<X>; the proxy types do not serve
any run-time purpose. Instead, the are only needed for overloading resolution at
compile time. Let us now assume that each schema-derived object type x imple-
ments a static member proxy of type Proxy<x> so that proxies can be conveniently
picked up from the types of interest. In the running example, we can invoke
the overloaded getter as follows (assuming an object myFoo of the schema-derived
object type):

// myFoo is of type tns. foo

Console.WriteLine(myFoo.Get(tns.bar.proxy)); // <tns:bar>
Console.WriteLine(myFoo.Get(tns.foo.bar.proxy)); // local <bar>
Console.WriteLine(myFoo.Get(ins.bar.proxy)); // <ins:bar>

A.2 Compile-Time Validation for Construction

Sec. Bl clarified that the common model of object construction and initialization
is limited with regard to the statically checked validity of the constructed XML
trees. We will now engage in a sophisticated encoding scheme that allows us to
recover some static typing. The scheme is inspired by work on XML processing
in Haskell using its type-class system [56l57]. Fig. B4l shows a small (contrived)
schema that explores regular expression types and mixed content. The figure
also shows a sample instance whose construction we hope to validate.

Let us look at run-time validation for inspiration. Each content model can be
mapped to a finite-state machine (FSM) that performs ‘shallow validation’, i.e.,
the FSM checks element names (by means of instance-of tests) without descending
into subtrees. Fig.d8implements shallow validation for the stress test from Fig. 44}
we assume a node-label-preserving mapping. Shallow validation is performed b,
the ‘untyped’ constructor of a schema-derived object type; cf. the params keyword
Shallow validation commences as follows. There is an enum type with the states
of the FSM. The nodes are passed as input to the FSM. Text nodes are accepted
regardless of state because of the mixed content model. Validation throws when
FSM simulation gets stuck or the input ends in a non-final state.

We can move FSM simulation from run-time to compile-time as follows:

— The states of the FSM become designated, distinct types.
— Each state type is a wrapper type around the constructed type.

23 A note on C#: the params keyword enables open-ended argument lists of the array’s
item type. For instance, params object [| nodes means that any number of arguments of
type object is admitted and collected in a single array nodes.

Revealing the X/O Impedance Mismatch

Sample schema

<xs:element name="foo" >
<xs:complexType mixed="true" >
<xs:sequence>
<xs:element name="a" type="..." />
<xs:element name="b" type="..." maxOccurs="unbounded” />
<xs:choice minOccurs="0">
<xs:element name="a" type="..." />
<xs:element name="c" type="..." />
< /xs:choice>
< /xs:sequence>
< /xs:complexType>
< /xs:element>

Sample instance

<foo>
"Text before 'a’.”,
<a/>
"Text before 1st (mandatory) 'b’.",

"We could stop anywhere from here on.”

<c/>
"Let's stop here, indeed.”
< /foo>

Fig. 44. A stress test for XML-tree construction

— There is a static method, New, to initiate validating construction.
— There is an overloaded Add method modeling the state transitions.

— There are implicit casts from final-state types to the constructed type.

361

The key idea is that the overloaded Add method enables the type-checked con-
struction of objects by method chaining. Fig. @lillustrates shallow, compile-time
validation for the running example. The shown method chain resembles the orig-

inal XML literal.

A pure FSM approach suffers from obvious scalability problems. Occurrence
constraints (such as maxOccurs="42") cannot be checked efficiently with a plain FSM
because of the number of states that would be needed for counting. However,
in practice non-trivial occurrence constraints (other than ‘?’, ‘+’, “*’) hardly
occur [32]. More seriously, whenever content models prescribe free order, then
a pure FSM approach would explode due to the number of permutations to be

362 R. Lammel and E. Meijer

public class foo {
// Content
private object [] nodes;

// States of FSM
public enum State {BeforeA BeforeB,SeenB,BeforeChoice };

// Run—time validating constructor
public foo(params object[] nodes)

this .nodes = nodes;
State s = State.BeforeA;
foreach (var o in nodes)
if (!(o is string))
switch (s) {
case State.BeforeA :
if (o is a) { s++; break; }
goto default;
case State.BeforeB :
if (o is b) { s++; break; }
goto default;
case State.SeenB :
if (o is b) break;
if (o is a) { s++; break; }
if (o is c) { s++; break; }
goto default;
case State.BeforeChoice :
goto default;
default :
throw ..

}
if ((s!=State.SeenB) && (s!=State.BeforeChoice))
throw ..;

}
}

// classes a, b, ¢ omitted

Construction sample

var myFoo = new foo(
"Text before 'a’.”,
new a(),
"Text before 1st (mandatory) 'b’.",
new b(),
"We could stop anywhere from here on.”,
new b(),
new b(),
new c(),
"Let's stop here, indeed.”);

Fig. 45. Shallow, run-time validation for the content model in Fig. 4]

considered. Free order applies to attribute sets and <all> composites. We would
need more advanced techniques and type-system support [3] to recover from this
problem.

Revealing the X/O Impedance Mismatch

public class foo : List<object> {
// Default construction in begin state
public static foo.BeforeA New { get { return new BeforeA(new foo()); } }

// States with transitions
public struct BeforeA

{
internal BeforeA(foo v) {it=v;}
public BeforeA Add(string v) { it.Add(v); return this; }
public BeforeB Add(a v) { it.Add(v); return new BeforeB(it); }

internal foo it;

public struct BeforeB

internal BeforeB(foo v) {it=v;}
public BeforeB Add(string v) { it.Add(v); return this; }
public SeenB Add(b v) { it.Add(v); return new SeenB(it); }

internal foo it;

public struct SeenB

{
internal SeenB(foo v)
public SeenB Add(string v)
public SeenB Add(b v)

it =v; }

it .Add(v); return this; }

it .Add(v); return this; }

public BeforeChoice Add(a v) it .Add(v); return new BeforeChoice(it); }
public BeforeChoice Add(c v) it .Add(v); return new BeforeChoice(it); }
public foo End { get { return it; } }

internal foo it;

e arnlaca T

public struct BeforeChoice

internal BeforeChoice(foo v) {it=v;}
public BeforeChoice Add(string v) { it.Ad (v); return this; }
public foo End { get { return it; } }

internal foo it;

}

// End states deliver the completed object
public static implicit operator foo(SeenB v) { return v.it; }
public static implicit operator foo(BeforeChoice v) { return v.it; }

Construction sample

foo myFoo = foo.New
. Add(" Text before 'a’.”)
. Add(new a())
. Add(” Text before 1st (mandatory) 'b'".")
. Add(new b())
. Add(”"We could stop anywhere from here on.”)
. Add(new b())
. Add(new b())
. Add(new c())
. Add("Let’s stop here, indeed.”);

Fig. 46. Shallow, compile-time validation for the content model in Fig. {4l

363

364 R. Lammel and E. Meijer

Library support for Maybies

public abstract class Maybe<T> {
public abstract bool HasValue { get; }
public abstract T Value { get; set; }

public class Nothing<T> : Maybe<T> {
public override bool HasValue { get { return false; } }
public override T Value { get { throw ..; } set { throw ...; } }

public class Just<T> : Maybe<T> {
public override bool HasValue { get { return true; } }
public override T Value {
get { return value; }
set { this.value = value; }

}

private T value;

}

A sample of using Maybe

public class opts {
public int a;
public int? b;
public foo c;
public Maybe<foo> d;

public class foo { ... }

Fig. 47. A blend of Haskell’s Maybe and .NET’s Nullable

A.3 Haskell-Like Maybies

Sec.] clarified that optionality of reference types is not discoverable by de-
fault. We could explicitly express optionality by the use of a designated type
constructor, very much like .NET’s existing type constructor Nullable, but with-
out its restriction to value types. Fig. @1 defines such a type constructor; we
use the name Maybe in reference to Haskell’'s standard type constructor for
optionality.

The figure also illustrates the use of Maybe for the running example of Sec. 11
In principle, we could use Maybe in place of “?”, even for value types. However,
.NET’s nullable types are linguistically richer and more efficient. In particular,
primitive operations on the value types are lifted to nullable types, and some
forms of boxing are optimized away.

Revealing the X/O Impedance Mismatch

An interface for optionality

public interface IMaybe<T> {
bool HasValue { get; }
T Value { get; }

}

A generic Nothing

public class Nothing<T> : IMaybe<T> {
public bool HasValue { get { return false; } }

public T Value { get { throw ...; } set { throw

}

A generic Just

public class Just<T> : IMaybe<T> where T : Just<T> {
public bool HasValue { get { return true; } }
public T Value { get { return (T)this; } }

}

A sample of using Maybe

public class opts : Just<opts> {
// Reusable singleton
internal static IMaybe<opts> Nothing = new Nothing<opts>();

public int a;
public int? b;

public foo ¢

get { if (c==null) throw ..; return c; }
set { if (value==null) throw ...; c = value; }

public IMaybe<foo> d
get { if (d==null) d = global::d.Nothing; return d; }

set { d=value; }

}

private foo c;
private IMaybe<foo> d;

Fig. 48. Interface-based optionality

RN

365

One minor problem with the simple optionality technique is that the concept
of ‘null’ has become ambiguous: the code may need to be prepared to find both
the normal null and Maybe’s Nothing. This problem can be mitigated by switching
from a field-based model to a property-based model with getters that never

return normal nulls. Thus:

366 R. Lammel and E. Meijer

public class Choice<X1,X2> {
// Injection by functional construction
public Choice(X1 v) { any=v; idx=1; }
public Choice(X2 v) { any=v; idx=2; }

// Perform action
public void Do(Action<X1> al, Action<X2> a2) {
switch (idx) {
case 1: al((X1l)any); break;
case 2: a2((X2)any); break;
}
}

// Apply function
public R Apply<R>(Func<X1,R> f1, Func<X2,R> f2) {
switch (idx) {
case 1: return f1((X1)any);
case 2: return f2((X2)any);
default: throw ...; // impossible exception

}
}

// Private state
private object any;
private int idx;

Relevant delegate types

public delegate void Action<T> (T it) // Actions that effect
argument public delegate Y Func<X,Y>(X x); // Single—argument
functions

Fig. 49. A generic class for binary choices

public Maybe<foo> d {
get { if (d==null) d = new Nothing<foo>(); return d; }
set { d = value; }

}

private Maybe<foo> d;

Obviously, we should use the singleton design pattern to avoid creating many
instances of Nothing<T> for any given type. A more challenging source of overhead
concerns the use of wrapping with Just; one extra object per XML subtree in an
optional position would be created. These costs may be substantial. This problem
can be mitigated by the use of interface polymorphism, as shown below.

Revealing the X/O Impedance Mismatch 367

public class Sequence<X1,X2> {
// Functional construction
public Sequence(X1 x1, X2 x2) { x1=x1; x2=x2; }

// Getters and setters
public X1 First { get { return x1; } set { x1 = value; } }
public X2 Second { get { return x2; } set { x2 = value; } }

// Private state
private X1 x1;
private X2 x2;

Fig. 50. A generic class for binary sequences

In Fig. [48 we use an interface, IMaybe, instead of the earlier class Maybe. Wrap-
ping with Just is unnecessary because each and every schema-derived class imple-
ments the Just-like behavior — either locally or, when possible, by subclassing the
class Just. We also show again property implementations; one for a mandatory
particle; another one for an optional particle. The property implementation for
the mandatory particle refuses the normal null. The getter implementation for
the optional particle translates the normal null to Nothing.

A.4 Generics for Compositors

Sec. suggested that XSD compositors may be modeled as generic classes,
thereby providing one mapping option for nested composites. Fig. defines a
generic class for binary choices, in fact, binary, type-indexed co-products [53].
The class covers the following idioms: (i) construction such that one must commit
to either branch of the choice; (ii) updates on the grounds of ‘actions’ to be
performed on the object of the choice; (iii) queries on the grounds of ‘functions’
to be applied to the object of the choice. Further operations may be added,
e.g., for cloning. Conceptually, choices are commutative, but the generic class
is somewhat restrictive in this respect. That is, the textual order of the type
parameters in Choice<X1,X2> is also assumed for the argument lists of Do and Apply.
(We could attempt to enable all possible argument orders, except that this idea
does not scale for choices with more branches.)

For <al> composites, we could use the dual concept of type-indexed co-
products, i.e., type-indexed products. We omit this variation. Fig. defines
a (trivial) generic class for binary sequences. The class essentially corresponds
to the type constructor for pairs. There are getters and setters for both com-
ponents of the sequence. Construction must enumerate the components of the
sequence. Order of the particles is relevant for sequences, and hence, we provide
a positional access protocol based on members First, Second, ... (as opposed to a
type-driven protocol).

Altenkirch, Thorsten

Gibbons, Jeremy
Hinze, Ralf

Jeuring, Johan

72

1

72, 150

209

Author Index

Lammel, Ralf 285
Loh, Andres 72, 150

McBride, Conor 209
Meijer, Erik 285
Morris, Peter 209

Sheard, Tim 258

	Title Page
	Preface
	Organization
	Table of Contents
	Datatype-Generic Programming
	Introduction
	Generic Programming
	Genericity by Value
	Genericity by Type
	Genericity by Function
	Genericity by Structure
	Genericity by Property
	Genericity by Stage
	Genericity by Shape
	Universal vs Ad-Hoc Genericity
	Another Dimension of Classification

	Origami Programming
	Maps and Folds on Lists
	Unfolds on Lists
	Origami for Binary Trees
	Hylomorphisms
	Short-Cut Fusion
	Datatype Genericity
	Bifunctors
	Datatype-Generic Recursion Patterns

	The Origami Patterns
	The Origami Family of Patterns
	An Application of Origami
	Patterns as HODGPs
	The Example, Revisited

	The Essence of the Iterator Pattern
	Functional Iteration
	Idioms
	Idiomatic Traversal
	Examples of Traversal: Shape and Contents
	Collection and Dispersal
	Backwards Traversal
	Laws of Traverse
	Example

	Conclusions
	References
	Appendix: Java Programs
	Component
	Section
	Paragraph
	Iterator
	SectionIterator
	ParagraphIterator
	Action
	SpellCorrector
	Visitor
	PrintVisitor
	Builder
	InvalidBuilderId
	ComponentBuilder
	PrintBuilder
	Main

	Comparing Approaches to Generic Programming in Haskell
	Introduction
	Why Generic Programming Matters
	Data Types in Haskell
	Structure-Representation Types
	Encoding and Decoding
	Equality
	Map
	Show
	Update Salaries

	Criteria for Comparison
	Structure in Programming Languages
	The Type Completeness Principle
	Well-Typed Expressions do not go Wrong
	Information in Types
	Integration with the Underlying Programming Language
	Tools
	Other Criteria

	Comparing Approaches to Generic Programming
	Clean
	PolyP
	Scrap Your Boilerplate
	Approaches Based on Reflection
	Lightweight Approaches to Generic Programming

	Conclusions and Future Work
	Suitability for Generic Programming Concepts
	Why Would I Use This Approach?
	Future Work

	References

	Generic Programming, Now!
	Introduction
	Preliminaries
	Values, Types and Kinds
	Generalised Algebraic Datatypes
	Open Datatypes and Open Functions

	A Guided Tour
	Type-Indexed Functions
	Introducing New Datatypes
	Generic Functions
	Dynamic Values
	Stocktaking

	Type Representations
	Representation Types for Types of a Fixed Kind
	Kind-Indexed Families of Representation Types
	Representations of Open Type Terms

	Views
	Spine View
	The Type-Spine View
	Lifted Spine View
	Sum of Products
	Lifted Sums of Products

	Related Work
	Library
	Binary Trees
	Text with Indentation
	Parsing

	References

	Generic Programming with Dependent Types
	Introduction
	Programming with Dependent Types in Epigram
	The Universe of Finite Types
	Universes for Generic Programming
	Enumerating Finite Types
	Elements of Context-Free Types
	Strictly Positive Types
	Generic Map
	Relating Universes
	Universes and Representation Types

	Containers
	Unary Containers
	n-ary Containers
	Coproducts and Products
	Structural Operations
	Inductive Types (μ)
	Interpreting Universes
	Small Containers

	Derivatives
	Derivatives of Context-Free Types
	Generic Plugging
	Derivatives of Containers

	Conclusions and Further Work
	References

	Generic Programming in Ωmega�
	Introduction
	Genericity and the Curry-Howard Isomorphism

	The Structure of ωmega
	A Simple Example
	Overview
	Relation to Other Systems

	Introduction to mega
	Generic Programming
	Datatype Generic Programs
	The n-Sum Example
	Generic n-Way Zip
	Using ωmega's Hierarchy of Levels

	ωmega's Approach to Dependent Types
	Conclusion

	References
	Inductively Sequential Functions

	Revealing the X/O Impedance Mismatch (Changing Lead into Gold)
	Introduction
	What Is the X/O Impedance Mismatch Anyway?
	An Illustrative X-to-O Mapping Sample
	Dimensions of the X/O Impedance Mismatch
	The Ambition: Survey X/O Differences
	The Setup: Map XSD to C#

	Background
	Reconciliation of the X/O Impedance Mismatch
	OO Programming on XML Data with DOM and Co.
	OO Programming on XML Data with `Schema First'
	Plain Objects vs. XML Objects
	Object Serialization Based on `Code First'
	Properties of X-to-O Mappings

	The X/O Data Models
	Trees vs. Graphs
	Accessible vs. Unavailable Parents
	Ambiguous vs. Unique Nominal Selectors
	Queriable Trees vs. Dottable Objects
	Node Labels vs. Edge Labels
	Ordered vs. Unordered Edges
	Qualified vs. Local Selectors
	Semi-structured vs. Structured Content
	Tree literals vs. Object Initialization

	The X/O Type Systems
	Occurrence Constraints
	Choice Types
	Nested Composites
	Local Elements
	Element Templates
	Type Extension
	Element Substitution
	Type Restriction
	Simple Types

	Concluding Remarks
	References
	Extreme Mapping Options
	Type-Driven Member Access
	Compile-Time Validation for Construction
	Haskell-Like Maybies
	Generics for Compositors

	Author Index

